N

MICROCHIP

MPLAB® C18
C COMPILER
USER’S GUIDE

© 2004 Microchip Technology Inc.

DDDDDDDD

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=1S0/TS 16949:2002 —=

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microlD, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,
SmartSensor and The Embedded Control Solutions Company
are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,
PICLAB, PICtail, PowerCal, Powerlnfo, PowerMate,
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,
SmartTel and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51288C-page i

© 2004 Microchip Technology Inc.

MPLAB® C1
MICROCHIP

8 C COMPILER
USER’S GUIDE

Table of Contents
=Y - T 1
Chapter 1. Introduction
S B Y= TSP 7
1.2 Invoking the Compiler...........oooi i 7
1.2.1 Creating OUIPUL FilESeuviiieiiiiie e 8
1.2.2 Displaying DiagnOStiCSuuueeeiiiiiaaieeiieeeee e 8
1.2.3 DefiNiNg MaACIOScoiiiiiiiiie e 9
1.2.4 Selecting the ProCeSsSSOr........ooiuiiiiiiiiee e 9
1.2.5 Selecting the MOdec.uviiiiii e 9
Chapter 2. Language Specifics
2.1 Data Types and LIMItSccoooiiiiiiiiiiiic e 11
P2 I B 101 (= Te =T I o1 PP PRPR 11
2.1.2 Floating-point TYPESuuiiiiiiiiiiee ettt 12
2.2 Data Type Storage - ENdianness.........c.ccooviiiiiiiieeeiiiiiieeeee e 12
2.3 SHOrage ClasSSES. ...ccciiiiiiiiiiiiei et 13
2,301 OVEIIAY ..t 13
2.3.2 static Function Argumentsoooiiiiiiiiiiiii e 14
2.4 Storage QUANIfIErSuuuuieiiiiiiiiiiiiiiiiiiiee e e e e e e eeeaeees 14
2.4.1 near/far Data Memory Objects...........cceveeiiiiiiiiiiiieee e 14
2.4.2 near/far Program Memory ObJjectS........cccceeeeeiiiiiiiiiiiiiiiiicceeeeeeeeec 14
2.4.3 ram/rom QUANTIEIS.......cooeeiieeee e 15
2.5 Include File Search Paths............ccuuviiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 15
2.5.1 System Header Files............coooiiiieiiiiiiieee e 15
2.5.2 User Header Files ... 15
2.6 Predefined Macro NamMESuuuuiiiiiiiiiiiiiiiiieeieeeeeeeeee e eeeeeeeeeeeeeeees 16
2.7 SO DIVEIGENCES......uuuuuueiuuiiiiiiiiiiittiirettesteasreeeeeeeeeeereeeeessresereeerrrrerrrrereeaaees 16
2.7.1 Integer PromoOtiONS.......c.uuiiiiiiiiiie e 16
2.7.2 NUMETIC CONSLANTS ... 16
2.7.3 StriNg CONSIANTSoiiiiiiiie e 17
2.8 Language EXIENSIONSccoiiiiiiiiiciccee e e 19
2.8.1 ANONYMOUS STTUCKUIESceiiiiiiiieiiiiiie ettt 19
2.8.2 INlNE ASSEMDIYoeiiiiiiiiee e 20
PN R o =T | 1 = 1= USSP 21
2.9.1 #pragma SECEIOMEYDE ciiiiiiii i i i 21
2.9.2 #pragma interruptlow fname/
#pragma IinterTUuPt fIAME ..o 27
2.9.3 #pragma varlocate bank variable-name
#pragma varlocate "section-name" variable-name..........cocee... 31
2.10 Processor-specific Header Filesccooviiiiiiiiiiiiiiii e 33
2.11 Processor-specific Register Definitions Files...........ccooooiiiiiiiien, 35
2.12 Configuration WOISoooiiiiiiiiiiiiiee e e 35

© 2004 Microchip Technology Inc.

DS51288C-page iii

MPLAB® C18 C Compiler User’s Guide

Chapter 3. Run-time Model

Chapter 4. Optimizations

3.1 MemOry MOGEIS ... 37
3.2 Calling ConVeNntioNScooviiiiiiiiiiii 38

3.2.1 REtUMN VAIUESottt 39

3.2.2 Managing the Software Stack...........cccoiiiiiiii 40

3.2.3 Mixing C and ASSEMDIYuuuiiiiiiiiiie e 40
3.3 Startup Code... ..o 45

3.3.1 Default BEhaVIOr..........oooiiii e 45

3.3.2 CUStOMIZALION........ooii e 46
3.4 Compiler-Managed ReSOUICEScccoeeeiiiiiiiiiee, 46
4.1 Duplicate String Mergingcoooiuuiiiiieeiiiiieeeee e 49
4.2 BranChES.....oouuiiiii i e e 50
4.3 BanKiNgooo o 50
4.4 WREG Content TracKinguuuueieeeiiiiiiiiieeiieeeeeeeeeee e 51
4.5 Code Straighteningoooiiiiiiii e 51
I - 1| =1 o 1o T SRR 52
4.7 Unreachable Code RemoOval...........ccooiviiiiiiiiiiiee e 53
4.8 Copy Propagationeoeiiiiiiiiiiiic e 53
4.9 Redundant Store Removalcevieviiiiiiiiiiiiiiiii 54
4.10 Dead Code REMOVAIcoiiiieiiiiieeee et e e e 55
4.11 Procedural AbStractioncoooiriiiiiiiiii e 55

Chapter 5. Sample Application
Appendix A. COFF File Format

A1

A2

A3

struct filehdr-File Header............oooiiiiiiii e 61
A1.1 unsigned Short £ MAGIC..iiiiiiiii e 61
A1.2 unsigned Short £ NSCIS..iciiiii e 61
A1.3 unsigned long £ tIimMAat ..o 61
A1.4 unsigned 1ong £ SYMPET . 61
A1.5 unsigned 1ong £ ISYMS ..o e 61
A1.6 unsigned short £ OPLRAT..i e 61
A7 unsigned Short £ FlagS..cccciiiiiii e 62
struct opthdr - Optional File Header..................cccco . 62
A.2.1 unsigned ShOTL MAGIC ittt e e e e e e aa e e e 62
A.2.2 unsigned ShOTL VSLAMDiiiiiiiiiiiiiiiee e e e ieiirreee e e e e e e e e e rreeaeee e as 62
A.2.3 unsigned loNg PrOC EYDE .ttt 62
A.24 unsigned long rom width DItS....ccccoiiii . 64
A.2.5 unsigned long ram width DIits.....i e 64
struct scnhdr - Section Header ... 64
LN Tt B U o e) < N PO PRSP PO PP PP PRPP 65
A.3.2 unsigned LlONGg S SI1ZE .t 65
A.3.3 unsigned 10Ng S SCMPET ittt e e ribee e e e naneeas 65
A3.4 unsigned 1ong S _TelPET . 65
A3.5 unsigned 1ong S LINNOPEL .t 65
A.3.6 unsigned ShOTrt S NIeElOC....iiiiiiiiiiii et 65
A.3.7 unsigned Short S NINIO...iiiiiiiiiiiiiieiii e 65
A.3.8 unsigned 1ong S FLagS .. 66

DS51288C-page iv

© 2004 Microchip Technology Inc.

Table of Contents

A4

A5

A.6

A7

A8

A9

A10

A2

A13

A14

struct reloc - Relocation Entry ..o, 66
A4.1 unsigned 1ong T VAT ..o 66
A4.2 unsigned 1ong T SYMIAX toceeeiiiiiiiieeeiiiiieeesiiieee e sireeeesasreeeesanreeeeeaaa 66
A43 ShOrt T OFFSEL i 66
A4.4 unsigned ShOTL T LYDPE i 67
struct syment - Symbol Table Entryccooiiiiiiiii 68
ABT UNIOM Tl 68
A5.2 unsigned 1ong N VALUE. ..ottt 68
A.5.3 SNHOTL NI SCIUM..ccciiiiiii ittt e e e e e e e 69
A5.4 unsigned ShOort N EYPE i 69
A58 Char I SCLaASS ittt 70
AB5.6 ChAr N IUMAUR . ..ooiiiiiii et e e e s e 70
struct coff lineno -Line NumberEntry............cc.ocoi 71
A6.1 unsigned 10ng 1 STCIAX ...ttt e e e e e 71
A6.2 unsigned Short 1 IMIO. ittt e e 71
A6.3 unsigned 10ng 1 PaAAAT i iiiiiie ittt 71
A6.4 unsigned Short 1 FlagS .. 71
A.6.5 unsigned 1ong 1 FCNNAX....cciiiiiiiiiiiiee et 71
struct aux_ file - Auxiliary Symbol Table Entry for a Source File....... 71
A7.1 unsigned 1ong X _OLESEL i 71
A7.2 unsigned 1ong X INCLINE .iiiiiiiiiiiiiiiiesie e 71
A7.3 unsigned char X FL1agS .o 72
struct aux_scn - Auxiliary Symbol Table Entry for a Section 72
A8.1 unsigned 1oNng X SCILETL..iii i 72
A.8.2 unsigned short X NIYELOC ..ot 72
A.8.3 unsigned short X NILINNO .iciiiiiiiiiiiiiiiiiiee e 72
struct aux_tag - Auxiliary Symbol Table Entry for a
struct/union/enum TAGNAMEuuueiiiiiiiiiiieiiiieeieeeeeeeeeeeeaeeaaaaaaaaaaaans 72
A9.1 unsigned short X SIZe. ..o 72
A9.2 unsigned 1ong X eNAIAX.....cociieriiieiriieniee e 72
struct aux_eos - Auxiliary Symbol Table Entry for an End of
SELUCE /UM IO/ ©IIUIM ..ttt ettt e eeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaans 73
A10.1 unsigned 10ong X LagmdX. .. iiieieeeiiieiee et e et 73
A10.2 unsigned short X_SiZe....ciiiiiiiiiii i 73
struct aux_fcn - Auxiliary Symbol Table Entry for a Function Name.. 73
A11.1 unsigned 10ong X LagidX. ..o irieeee ettt 73
A.11.2 unsigned 10Nng X LNNODET tiieiiiieiiiiiiieeiiieiee e e e essnneeeeesnneeees 73
A11.3 unsigned 10ng X_eNANAXciieriieeirieeerie et siee e 73
A 114 ShOTE X BCESCIIUM tiiiuviiiiiie ettt 73
struct aux fcn calls - Auxiliary Symbol Table Entry for

Function Call References.............ccoiiiiiiii e 74
A12.1 unsigned 1ong X CalleendX ... iiiiieeeiiiiiie et 74
A12.2 unsigned long x_1S iNterrupt....cccccciiiiiiiiiiiiie e 74
struct aux_arr - Auxiliary Symbol Table Entry for an Array................ 74
A13.1 unsigned 1ong X LagidX. ..o iiieeee ettt 74
A13.2 unsigned shOrt X SI1Ze..ciiiiiiiiiii e 74
A13.3 unsigned short x_dimen [X DIMNUM]cccooiiiiiiiniiiieiiieesiee e 74
struct aux_eobf - Auxiliary Symbol Table Entry for the End of a

Block or FUNCHION ..o 75
A14.1 unsigned short X LINIMO ...ttt ee e 75

© 2004 Microchip Technology Inc. DS51288C-page v

MPLAB® C18 C Compiler User’s Guide

A.15 struct aux bobf - Auxiliary Symbol Table Entry for the

Beginning of a Block or FUNCHONcociiiiieiiiiie e 75
A15.1 unsigned short X LINIO ittt 75
A15.2 unsigned 10ng X eNAIAX .o.oieeieieiiiiiiee et 75
A.16 struct aux_ var - Auxiliary Symbol Table Entry for a
Variable of Type struct/union/enum......cccccceeeeeiieiiiiiiiieeeeeeeeeeeee e, 75
A16.1 unsigned 10Ng X LAGNIAK corriiiiieiiiieeirie et e et 75
A16.2 unsigned shOrt X S1Ze .o 75
A.17 struct aux_ field - Auxiliary Entry for a Bitfieldcccccciniiinnn. 76
AN17.1 unsigned shOTt X SI1ZE ..o 76
Appendix B. ANSI Implementation-defined Behavior
B.1 INtrOdUCHION ... 77
B.2 Identifierscccooeieeeeeeeee e 77
= B O =1 = Tox (= TSR 77
[1 (=To =T 78
B.5 Floating-pointooueeiiiii e 78
B.6 Arrays and POINTErScooiiiiiiiiiiee e 79
B.7 ReQISIErS .o 79
B.8 Structures and Unions ... 79
B.9 Bit-fIeldS ..o 79
B. 10 ENUMEratioNS......coo i 80
B.11 Switch Statement...........cooo 80
B.12 Preprocessing DIir€ClIVEScuuveiiiiii e 80
Appendix C. Command-line Summary
Appendix D. MPLAB® C18 Diagnostics
D R = 4 (o £ TSP OU PR UURRUPRPIPORIN 83
B2 AT = o 11 T L= PR 93
D.3 MESSAUES .ottt 95
Appendix E. Extended Mode
E.1 Source Code Compatibilityccccceiuuiiiiiiiiiiiiiiiiiie e 97
E. 1.1 Stack Frame Size...... ..o 97
E.1.2 static Parameters. ... 97
E.1.3 overlay KEYWOIcooiiiiiiiiiee ettt e 97
E.1.4 InliN€ ASSEMDIY ... 98
E.1.5 Predefined MaCrOScoviiiiiiiie ettt 98
E.2 Command-line Option Differences..........cccccouvuviiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeee 99
E.3 COFF File DifferencCesuoiiiiiiiiiiiiiiee e 99
E.3.1 GENEIIC PrOCESSON ...t ettt a e e e e eeaeeee s 99
E.3.2 File Header's £ flags Field...........ccccoiiiiiiiiie 99
L] Lo == T 101
g o =G 107
Worldwide Sales and Service.........cccoiiiiiiiiiiiiiiiiiinsssssssssssssssssssnre s 114
DS51288C-page vi © 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Preface

INTRODUCTION

This document discusses the technical details of the MPLAB® C18 compiler. This

document will explain all functionality of the MPLAB C18 compiler. It assumes that the

programmer already:

* knows how to write C programs

* knows how to use the MPLAB Integrated Development Environment (IDE) to
create and debug projects

+ has read and understands the processor data sheet for which code is being
written

ABOUT THIS GUIDE

Document Layout

The document layout is as follows:

» Chapter 1: Introduction — Provides an overview of the MPLAB C18 compiler and
information on invoking the compiler.

* Chapter 2: Language Specifics — Discusses how the MPLAB C18 compiler
differs from the ANSI standard.

» Chapter 3: Run-time Model — Discusses how the MPLAB C18 compiler utilizes
the resources of the PIC18 PICmicro® microcontrollers.

» Chapter 4: Optimizations — Discusses the optimizations that are performed by
the MPLAB C18 compiler.

» Chapter 5: Sample Application — Provides a sample application and describes
the source code with references to the specific topics discussed in the User's
Guide.

» Appendix A: COFF File Format — Provides details of the Microchip COFF
format.

» Appendix B: ANSI Implementation-defined Behavior — Discusses MPLAB C18
implementation-defined behavior as required by the ANSI standard.

» Appendix C: Command-line Summary — Lists command-line options along with
references to sections that discuss each of the command-line options.

» Appendix D: MPLAB C18 Diagnostics — Lists errors, warnings and messages.

» Appendix E: Extended Mode — Discusses differences between Non-extended
and Extended modes.

© 2004 Microchip Technology Inc. DS51288C-page 1

MPLAB® C18 C Compiler User’s Guide

Conventions Used in this Guide

This User's Guide uses the following documentation conventions:

DOCUMENTATION CONVENTION

Description Represents Examples
Code (Courier font):
Courier font Sample source code distance -= time * speed;
Filenames and paths c:\mccl8\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Italic Courier Variable name argument | file.o, where file can be any valid file name
font
Square Optional arguments mccl8 [options] file [options]
brackets []
Ellipses... Replaces repeated var_name [, var_name...]
instances of text
Represents code void main (void)
supplied by user. {
}
O0xnnnn A hexadecimal number O0xFFFF, 0x007A
where nis a hexadecimal
digit

Documents (Arial font):

Italic characters | Referenced books | MPLAB User’s Guide

Documentation Updates

All documentation becomes dated, and this guide is no exception. Since MPLAB C18
is constantly evolving to meet customer needs, some tool descriptions may differ from
those in this document. Please refer to our web site to obtain the latest documentation
available.

Documentation Numbering Conventions

Documents are numbered with a “DS” number. The number is located on the bottom of
each page, in front of the page number. The numbering convention for the DS Number
is DSXXXXXA, where:

XXXXX
A

The document number.
The revision level of the document.

DS51288C-page 2

© 2004 Microchip Technology Inc.

Preface

PIC18 DEVELOPMENT REFERENCES

readme.c18

For the latest information on using MPLAB C18 C compiler, read the readme.c18 file
(ASCII text) included with the software. This readme file contains update information
that may not be included in this document.

MPLAB® Cc18 C Compiler Getting Started Guide (DS51295)

Describes how to install the MPLAB C18 compiler, how to write simple programs and
how to use the MPLAB IDE with the compiler.

MPLAB® Cc18 C Compiler Libraries (DS51297)

Reference guide for MPLAB C18 libraries and precompiled object files. Lists all library
functions provided with the MPLAB C18 C compiler with detailed descriptions of their
use.

MPLAB® IDE V6.XX Quick Start Guide (DS51281)

Describes how to set up the MPLAB IDE software and use it to create projects and
program devices.

MPASM™ User’s Guide with MPLINK™ Linker and MPLIB™ Librarian (DS33014)

Describes how to use the Microchip PICmicro MCU assembler (MPASM), linker
(MPLINK) and librarian (MPLIB).

PICmicro® 18C MCU Family Reference Manual (DS39500)

Focuses on the Enhanced MCU family of devices. The operation of the Enhanced MCU
family architecture and peripheral modules is explained but does not cover the
specifics of each device.

PIC18 Device Data Sheets and Application Notes

Data sheets describe the operation and electrical specifications of PIC18 devices.
Application notes describe how to use PIC18 devices.

To obtain any of the above listed documents, visit the Microchip web site
(www.microchip.com) to retrieve these documents in Adobe Acrobat (.pdf) format.

© 2004 Microchip Technology Inc. DS51288C-page 3

MPLAB® C18 C Compiler User’s Guide

C REFERENCES

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

Beatman, John B. Embedded Design with the PIC18F452 Microcontroller, First
Edition. Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Focuses on Microchip Technology’s PIC18FXXX family and writing enhanced
application code.

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition.
Prentice-Hall, Englewood Cliffs, New Jersey 07632.

Covers the C programming language in great detail. This book is an authoritative
reference manual that provides a complete description of the C language, the
run-time libraries and a style of C programming that emphasizes correctness,
portability and maintainability.

Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Presents a concise exposition of C as defined by the ANSI standard. This book
is an excellent reference for C programmers.

Kochan, Steven G. Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Another excellent reference for learning ANSI C, used in colleges and
universities.

Van Sickle, Ted. Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

Although this book focuses on Motorola microcontrollers, the basic principles of
programming with C for microcontrollers is useful.

DS51288C-page 4 © 2004 Microchip Technology Inc.

Preface

THE MICROCHIP WEB SITE

Microchip provides on-line support on the Microchip World Wide Web (WWW) site. The
web site is used by Microchip as a means to make files and information easily available
to customers. To view the site, you must have access to the Internet and a web
browser, such as, Netscape Navigator® or Microsoft® Internet Explorer.

The Microchip web site is available by using your favorite Internet browser to reach:
http://www.microchip.com

The web site provides a variety of services. Users may download files for the latest
development tools, data sheets, application notes, user’s guides, articles and sample
programs. A variety of information specific to the business of Microchip is also
available, including listings of Microchip sales offices, distributors and factory
representatives.

Technical Support

» Frequently Asked Questions (FAQ)

» On-line Discussion Groups — conferences for products, development systems,
technical information and more

» Microchip Consultant Program Member Listing
* Links to other useful web sites related to Microchip products

Engineer’s Toolbox

» Design Tips
* Device Errata

Other Available Information

+ Latest Microchip Press Releases
+ Listing of seminars and events
» Job Postings

DEVELOPMENT SYSTEMS CUSTOMER NOTIFICATION SERVICE

Microchip started the customer notification service to help our customers keep current
on Microchip products with the least amount of effort. Once you subscribe, you will
receive e-mail notification whenever we change, update, revise or have errata related
to your specified product family or development tool of interest.

Go to the Microchip web site at (http://www.microchip.com) and click on Customer
Change Notification. Follow the instructions to register.

The Development Systems product group categories are:

» Compilers

* Emulators

* In-Circuit Debuggers

+ MPLAB IDE

* Programmers

© 2004 Microchip Technology Inc. DS51288C-page 5

MPLAB® C18 C Compiler User’s Guide

Here is a description of these categories:

Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C17, MPLAB C18 and MPLAB C30 C compilers;
MPASM™ and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object
linkers; MPLIB™ and MPLAB LIB30 object librarians.

Emulators — The latest information on Microchip in-circuit emulators. This includes the
MPLAB ICE 2000 and MPLAB ICE 4000.

In-Circuit Debuggers — The latest information on the Microchip in-circuit debugger,
MPLAB ICD 2.

MPLAB IDE - The latest information on Microchip MPLAB® IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE and MPLAB SIM simulators, MPLAB IDE Project Manager
and general editing and debugging features.

Programmers — The latest information on Microchip device programmers. These
include the MPLAB PM3 and PRO MATE® Il device programmers and PICSTART®
Plus development programmer.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

+ Distributor or Representative

* Local Sales Office

+ Field Application Engineer (FAE)

» Corporate Applications Engineer (CAE)

* Hotline

Customers should call their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. See the
back cover for a list of sales offices and locations.

Corporate Applications Engineers (CAEs) may be contacted at (480) 792-7627.

In addition, there is a Systems Information and Upgrade Line. This line provides system
users a list of the latest versions of all of Microchip’s development systems software
products. Plus, this line provides information on how customers can receive any
currently available upgrade Kkits.

The Hotline Numbers are:

1-800-755-2345 for U.S. and most of Canada.
1-480-792-7302 for the rest of the world.

DS51288C-page 6

© 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 1. Introduction

1.1 OVERVIEW

The MPLAB C18 compiler is a free-standing, optimizing ANSI C compiler for the PIC18
PICmicro® microcontrollers (MCU). The compiler deviates from the ANSI standard
X3.159-1989 only where the standard conflicts with efficient PICmicro MCU support.
The compiler is a 32-bit Windows console application and is fully compatible with
Microchip's MPLAB IDE, allowing source-level debugging with the MPLAB ICE
in-circuit emulator, the MPLAB ICD 2 in-circuit debugger or the MPLAB SIM simulator.

The MPLAB C18 compiler has the following features:

* ANSI '89 compatibility

* Integration with the MPLAB IDE for easy-to-use project management and
source-level debugging

» Generation of relocatable object modules for enhanced code reuse

» Compaitibility with object modules generated by the MPASM assembler, allowing
complete freedom in mixing assembly and C programming in a single project

» Transparent read/write access to external memory
+ Strong support for inline assembly when total control is absolutely necessary
+ Efficient code generator engine with multi-level optimization

» Extensive library support, including PWM, SPI™, I2C™, UART, USART, string
manipulation and math libraries

* Full user-level control over data and code memory allocation

1.2 INVOKING THE COMPILER

The MPLAB® C18 Getting Started Guide (DS51295) describes how to use the compiler
with the MPLAB IDE. The compiler can also be invoked from the command line. The
command-line usage is:

mccl8 [options] file [options]

A single source file and any number of command-line options can be specified. The
--help command-line option lists all command-line options accepted by the compiler.
The -verbose command-line option causes the compiler to show a banner containing
the version number and the total number of errors, warnings and messages upon
completion.

© 2004 Microchip Technology Inc. DS51288C-page 7

MPLAB® C18 C Compiler User’s Guide

1.21 Creating Output Files

By default, the compiler will generate an output object file named file.o,where file
is the name of the source file specified on the command line minus the extension. The
output object file name can be overridden with the - fo command-line option. For
example:

mccl8 -fo bar.o foo.c

If the source file contains errors, then the compiler generates an error file named
file.err, where file is the name of the source file specified on the command line
minus the extension. The error file name can be overridden using the -fe
command-line option. For example:

mccl8 -fe bar.err foo.c
1.2.2 Displaying Diagnostics

Diagnostics can be controlled using the -w and -nw command-line options. The -w
command-line option sets the level of warning diagnostics (1, 2 or 3). Table 1-1
shows the level of warning diagnostics and the type of diagnostics that are shown. The
-nw command-line option suppresses specific messages (Appendix D or the
--help-message-1ist command-line option lists all messages generated by the
compiler). Help on all messages can be seen using the - -help-message-all
command-line option. For help on a specific diagnostic, the - -help-message
command-line option can be used. For example:

mccl8 --help-message=2068

displays the following results:

2068: obsolete use of implicit 'int' detected.

The ANSI standard allows a variable to be declared without a base type
being specified, e.g., "extern x;", in which case a base type of 'int'

is implied. This usage is deprecated by the standard as obsolete, and
therefore a diagnostic is issued to that effect.

TABLE 1-1: WARNING LEVELS

Warning Level Diagnostics Shown
1 Errors (fatal and non-fatal)
2 Level 1 plus warnings
3 Level 2 plus messages

DS51288C-page 8

© 2004 Microchip Technology Inc.

Introduction

1.2.3 Defining Macros

The -D command-line option allows a macro to be defined. The -D command-line
option can be specified in one of two ways: -Dname or -Dname=value. -Dname
defines the macro name with 1 as its definition. -Dname=value defines the macro
name with value as its definition. For example:

mccl8 -DMODE

defines the macro MODE to have a value of 1, whereas:
mccl8 -DMODE=2

defines the macro MODE to have a value of 2.

An instance of utilizing the -D command-line option is in conditional compilation of
code. For example:

#if MODE == 1
x = 5;
#elif MODE == 2
X = 6;
#telse
X = 7;
#endif

1.2.4 Selecting the Processor

By default, MPLAB C18 compiles an application for a generic PIC18 PICmicro
microcontroller. The object file can be limited to a specific processor with the
-pprocessor command-line option, where processor specifies the particular
processor to utilize. For example, to limit an object file for use with only the PIC18F452,
the command-line option -p18£452 should be used. The command-line option
-pl8cxx explicitly specifies that the source is being compiled for a generic PIC18
PICmicro microcontroller.

1.2.5 Selecting the Mode

The compiler can operate in one of two different modes: Extended or Non-extended.
When operating in the Extended mode, the compiler will utilize the extended instruc-
tions (i.e., ADDFSR, ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK)
and the indexed with literal offset addressing, which generally requires fewer instruc-
tions for accessing stack-based variables (resulting in a smaller program memory
image). When operating in Non-extended mode, the compiler will not utilize the
extended instructions nor the indexed with literal offset addressing. The - -extended
and - -no-extended command-line options tell the compiler the mode in which to
operate. Table 1-2 outlines the mode in which the compiler will operate based on the
command-line options specified.

© 2004 Microchip Technology Inc. DS51288C-page 9

MPLAB® C18 C Compiler User’s Guide

TABLE 1-2: MODE SELECTION

-p extended |-p no-extended -pl8cxx Nos:,::;ci:f(ie:(sjor

--extended Extended Error Extended Extended
--no-extended | Non-extended Non-extended Non-extended Non-extended
Not Specified Non-extended Non-extended Non-extended Non-extended

Note: If the compiler is invoked with mcc18 --help, the help displayed will be for the
compiler operating in the Non-extended mode; however, not all of the command-line
options are valid when the compiler is operating in the Extended mode. The
command line mcc18 --extended --help should be utilized to see help for the
compiler operating in the Extended mode.

Note: Other command-line options are discussed throughout the User’s Guide,
and a summary of all the command-line options can be found in
Appendix C.

DS51288C-page 10 © 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 2. Language Specifics

21 DATA TYPES AND LIMITS

211 Integer Types

The MPLAB C18 compiler supports the standard ANSI-defined integer types. The
ranges of the standard integer types are documented in Table 2-1. In addition, MPLAB
C18 supports a 24-bit integer type short long int (or long short int), in both
a signed and unsigned variety. The ranges of this type are also documented in

Table 2-1.
TABLE 2-1: INTEGER DATA TYPE SIZES AND LIMITS
Type Size Minimum Maximum
char (12 8 bits -128 127
signed char 8 bits -128 127
unsigned char 8 bits 0 255
int 16 bits -32,768 32,767
unsigned int 16 bits 0 65,535
short 16 bits -32,768 32,767
unsigned short 16 bits 0 65,535
short long 24 bits -8,388,608 8,388,607
unsigned short long 24 bits 0 16,777,215
long 32 bits -2,147,483,648 2,147,483,647
unsigned long 32 bits 0 4,294,967,295

Note 1: A plain char is signed by default.
2: Anplain char may be unsigned by default via the -k command-line option.

© 2004 Microchip Technology Inc. DS51288C-page 11

MPLAB® C18 C Compiler User’s Guide

2.1.2

32-bit floating-point types are native to MPLAB C18 using either the double or f1loat
data types. The ranges of the floating-point type are documented in Table 2-2.

Floating-point Types

TABLE 2-2: FLOATING-POINT DATA TYPE SIZES AND LIMITS

Minimum | Maximum

Exponent | Exponent Maximum Normalized

Type Size Minimum Normalized

float |32bits| -126 128 | 27126 ~ 1.17549435¢ - 38 | 2'% * (2-2715) ~ 6.80564693¢ + 38

double | 32bits | -126 128 | 27126 ~ 1.17549435¢ - 38 | 2'%8 * (2-2715) ~ 6.80564693e + 38

The MPLAB C18 format for floating-point numbers is a modified form of the IEEE 754
format. The difference between the MPLAB C18 format and the IEEE 754 format
consists of a rotation of the top nine bits of the representation. A left rotate will convert
from the IEEE 754 format to the MPLAB C18 format. A right rotate will convert from the
MPLAB C18 format to the IEEE 754 format. Table 2-3 compares the two formats.

TABLE 2-3: MPLAB C18 FLOATING-POINT VS. IEEE 754 FORMAT
Standard Exponent Byte Byte 0 Byte 1 Byte 2
IEEE 754 560€162€364€565 e,ddd dddd dddd dddd dddd dddd
MPLAB C18 €0€1626364656667 sddd dddd dddd dddd dddd dddd

Legend: s = sign bit
d = mantissa
e = exponent

2.2 DATA TYPE STORAGE - ENDIANNESS

Endianness refers to the ordering of bytes in a multi-byte value. MPLAB C18 stores
data in little-endian format. Bytes at lower addresses have lower significance (the value
is stored “little-end-first”). For example:

#pragma idata test=0x0200
long 1=0xAABBCCDD;

results in a memory layout as follows:

Address 0x0200 0x0201 0x0202 0x0203

Content 0xDD 0xCC 0xBB 0xAA

DS51288C-page 12

© 2004 Microchip Technology Inc.

Language Specifics

2.3 STORAGE CLASSES

MPLAB C18 supports the ANSI standard storage classes (auto, extern, register,
static and typedef).

2.31 Overlay

The MPLAB C18 compiler introduces a storage class of overlay. The overlay
storage class applies only when the compiler is operating in Non-extended mode (see
Section 1.2.5 “Selecting the Mode”). The overlay storage class may be applied to
local variables (but not formal parameters, function definitions or global variables). The
overlay storage class will allocate the associated symbols into a function-specific,
static overlay section. Such a variable will be allocated statically, but initialized upon
each function entry. For example, in:

void £ (void)

{
overlay int x = 5;
X++;

}

x will be initialized to 5 upon each function entry, although its storage will be statically
allocated. If no initializer is present, then its value upon function entry is undefined.

The MPLINK linker will attempt to overlay local storage specified as overlay from
functions that are guaranteed not to be active simultaneously. For example, in:

int £ (void)

overlay int x = 1;
return x;

}

int g (void)

{
overlay int y = 2;
return y;

}

If £ and g will never be active at the same time, x and y become candidates for sharing
the same memory location. However, in:

int £ (void)

overlay int x = 1;
return X;

}

int g (void)

{

overlay int y
y=£f ();
return y;

}

since £ and g may be simultaneously active, x and y will not be overlaid. The
advantage of using overlay locals is that they are statically allocated, which means
that, in general, fewer instructions are required to access them (resulting in a smaller
program memory image). At the same time, the total data memory allocation required
for these variables may be less than what would be required had they been declared
as static due to the fact that some of the variables may be overlaid.

Il
N

© 2004 Microchip Technology Inc. DS51288C-page 13

MPLAB® C18 C Compiler User’s Guide

If the MPLINK linker detects a recursive function that contains a local variable of
storage class overlay, it emits an error and aborts. If the MPLINK linker detects a call
through a function pointer in any module and a local variable of storage class overlay
in any (and not necessarily the same) module, it emits an error and aborts.

The default storage class for local variables is auto. This can be overridden explicitly
with the static or overlay keywords or implicitly with either the -scs (static local
variables) or - sco (overlay local variables) command-line option. For completeness,
MPLAB C18 also supports the -sca command-line option. This option allows the
storage class for local variables to be explicitly specified as auto.

2.3.2 static Function Arguments

Function parameters can have storage class auto or static. An auto parameter is
placed on the software stack, enabling reentrancy. A static parameter is allocated
globally, enabling direct access for generally smaller code. static parameters are
valid only when the compiler is operating in Non-extended mode (see Section 1.2.5
“Selecting the Mode”).

The default storage class for function parameters is auto. This can be overridden
explicitly with the static keyword or implicitly with the - scs command-line option.
The -sco command-line option will also implicitly override function parameters'
storage class with static.

24 STORAGE QUALIFIERS

In addition to the ANSI standard storage qualifiers (const, volatile), the MPLAB
C18 compiler introduces storage qualifiers of far, near, rom and ram. Syntactically,
these new qualifiers bind to identifiers just as the const and volatile qualifiers do
in ANSI C. Table 2-4 shows the location of an object based on the storage qualifiers
specified when it was defined. The default storage qualifiers for an object defined
without explicit storage qualifiers are far and ram.

TABLE 2-4: LOCATION OF OBJECT BASED ON STORAGE QUALIFIERS

rom ram
far Anywhere in program memory Anywhere in data memory (default)
near ||{In program memory with address less In access memory
than 64K

241 near/far Data Memory Objects

The far qualifier is used to denote that a variable that is located in data memory lives
in a memory bank and that a bank switching instruction is required prior to accessing
this variable. The near qualifier is used to denote that a variable located in data
memory lives in access RAM.

24.2 near/far Program Memory Objects

The far qualifier is used to denote that a variable that is located in program memory
can be found anywhere in program memory, or, if a pointer, that it can access up to and
beyond 64K of program memory space. The near qualifier is used to denote that a
variable located in program memory is found at an address less than 64K, or, if a
pointer, that it can access only up to 64K of program memory space.

DS51288C-page 14

© 2004 Microchip Technology Inc.

Language Specifics

243 ram/rom Qualifiers

Because the PICmicro microcontrollers use separate program memory and data
memory address busses in their design, MPLAB C18 requires extensions to distinguish
between data located in program memory and data located in data memory. The
ANSI/ISO C standard allows for code and data to be in separate address spaces, but
this is not sufficient to locate data in the code space as well. To this purpose, MPLAB
C18 introduces the rom and ram qualifiers. The rom qualifier denotes that the object is
located in program memory, whereas the ram qualifier denotes that the object is
located in data memory.

Pointers can point to either data memory (ram pointers) or program memory (rom
pointers). Pointers are assumed to be ram pointers unless declared as rom. The size
of a pointer is dependent on the type of the pointer and is documented in Table 2-5.

Note: When writing to a rom variable, the compiler uses a TBLWT instruction;
however, there may be additional application code that needs to be
written based on the type of memory being utilized. See the data sheet
for more information.

TABLE 2-5: POINTER SIZES

Pointer Type Example Size
Data memory pointer char * dmp; 16 bits
Near program memory pointer rom near char * npmp; 16 bits
Far program memory pointer rom far char * fpmp; 24 bits

2.5 INCLUDE FILE SEARCH PATHS
2.51 System Header Files

Source files included with #include <filename> are searched for in the path
specified in the MCC_ INCLUDE environment variable and the directories specified via
the -I command-line option. Both the MCC_ INCLUDE environment variable and the -
values are a semi-colon delimited list of directories to search. If the included file exists
in both a directory listed in the MCC_INCLUDE environment variable and a directory
listed in a - I command-line option, the file will be included from the directory listed in
the - I command-line option. This allows the MCC INCLUDE environment variable to
be overridden with a -1 command-line option.

2.5.2 User Header Files

Source files included with #include “filename” are searched for in the directory
containing the including file. If not found, the file is searched for as a system header file
(see Section 2.5.1 “System Header Files”).

© 2004 Microchip Technology Inc. DS51288C-page 15

MPLAB® C18 C Compiler User’s Guide

2.6 PREDEFINED MACRO NAMES

In addition to the standard predefined macro names, MPLAB C18 provides the
following predefined macros:

__18CxX The constant 1, intended to indicate the MPLAB C18 compiler.

___PROCESSOR The constant 1 if compiled for the particular processor. For example,
___18c452 would be defined as the constant 1 if compiled with the -p18c452
command-line option and __ 18F258 would be defined as the constant 1 if
compiled with the -p18£258 command-line option.

__SMALL__ The constant 1 if compiled with the -ms command-line option.
___LARGE__ The constant 1 if compiled with the -m1 command-line option.

___TRADITIONAL18 _ The constant 1 if the Non-extended mode is being used
(see Section 1.2.5 “Selecting the Mode”).

__EXTENDED18__ The constant 1 if the Extended mode is being used
(see Section 1.2.5 “Selecting the Mode”).

2.7 ISO DIVERGENCES

271 Integer Promotions

ISO mandates that all arithmetic be performed at int precision or greater. By default,
MPLAB C18 will perform arithmetic at the size of the largest operand, even if both
operands are smaller than an int. The ISO mandated behavior can be instated via the
-0i command-line option.

For example:

unsigned char a, b;
unsigned i;

a = b = 0x80;
i =a + b; /* ISO requires that i == 0x100, but in C18 i == 0 */

Note that this divergence also applies to constant literals. The chosen type for constant

literals is the first one from the appropriate group that can represent the value of the
constant without overflow.

For example:

#define A 0x10 /* A will be considered a char unless -0i
specified */

#define B 0x10 /* B will be considered a char unless -0i
specified */

#define C (A) * (B)

unsigned i;
i = C; /* ISO requires that i == 0x100, but in C18 i == 0 */

2.7.2 Numeric Constants

MPLAB C18 supports the standard prefixes for specifying hexadecimal (0x) and octal
(0) values and adds support for specifying binary values using the 0b prefix. For
example, the value two hundred thirty seven may be denoted as the binary constant
0b11101101.

DS51288C-page 16

© 2004 Microchip Technology Inc.

Language Specifics

273 String Constants

The primary use of data located in program memory is for static strings. In keeping
with this, MPLAB C18 automatically places all string constants in program memory.
This type of a string constant is “array of char located in program memory”, (const
rom char []). The .stringtable sectionis a romdata (see Section 2.9.1
“#pragma sectiontype”)section that contains all constant strings. For example the
string “hel10” in the following would be located in the . stringtable section:

strcmppgm2ram (Foo, "hello");

Due to the fact that constant strings are kept in program memory, there are multiple
versions of the standard functions that deal with strings. For example, the strcpy
function has four variants, allowing the copying of a string to and from data and
program memory:
/*

* Copy string s2 in data memory to string sl in data memory

*/

char *strcpy (auto char *sl, auto const char *s2);

/*

* Copy string s2 in program memory to string sl in data
* memory

*/

char *strcpypgm2ram (auto char *sl, auto const rom char *s2);

/*

* Copy string s2 in data memory to string sl in program

* memory

*/
rom char *strcpyram2pgm (auto rom char *sl, auto const char *s2);
/*

* Copy string s2 in program memory to string sl in program

* memory

*/

rom char *strcpypgm2pgm (auto rom char *sl,
auto const rom char *g2);

When using MPLAB C18, a string table in program memory can be declared as:

rom const char table[] [20] = { "string 1", "string 2",
"string 3", "string 4" };

rom const char *rom table2[] = { "string 1", "string 2",
"string 3", "string 4" };

The declaration of table declares an array of four strings that are each 20 characters
long, and so takes 80 bytes of program memory. table2 is declared as an array of
pointers to program memory. The rom qualifier after the * places the array of pointers
in program memory as well. All of the strings in table2 are 9 bytes long, and the array
is four elements long, so table2 takes (9*4+4*2) = 44 bytes of program memory.
Accesses to table2 may be less efficient than accesses to table, however, because
of the additional level of indirection required by the pointer.

An important consequence of the separate address spaces for MPLAB C18 is that
pointers to data in program memory and pointers to data in data memory are not
compatible. Two pointer types are not compatible unless they point to objects of
compatible types and the objects they point to are located in the same address space.
For example, a pointer to a string in program memory and a pointer to a string in data
memory are not compatible because they refer to different address spaces.

© 2004 Microchip Technology Inc. DS51288C-page 17

MPLAB® C18 C Compiler User’s Guide

A function to copy a string from program to data memory could be written as follows:

void str2ram(static char *dest, static char rom *src)

{

while ((*dest++ = *src++) != '"\0')
}
The following code will send a string located in program memory to the USART on a
P1C18C452 using the PICmicro MCU C libraries. The library function to send a string
to the USART, put sUSART (const char *str), takes a pointer to a string as its
argument, but that string must be in data memory.

rom char mystring[] = "Send me to the USART";

void foo(void)

{
char strbuffer[21];
str2ram (strbuffer, mystring);
PutsUSART (strbuffer);

}

Alternatively, the library routine can be modified to read from a string located in program
memory.

/*
* The only changes required to the library routine are to
* change the name so the new routine does not conflict with
* the original routine and to add the rom qualifier to the
* parameter.
*/
void putsUSART rom(static const rom char *data)
{
/* Send characters up to the null */
do

{

while (BusyUSART())

’

/* Write a byte to the USART */
PutcUSART (*data) ;
} while (*data++);

}

DS51288C-page 18

© 2004 Microchip Technology Inc.

Language Specifics

2.8 LANGUAGE EXTENSIONS

2.81 Anonymous Structures

MPLAB C18 supports anonymous structures inside of unions. An anonymous structure
has the form:

struct { member-list };

An anonymous structure defines an unnamed object. The names of the members of an
anonymous structure must be distinct from other names in the scope in which the
structure is declared. The members are used directly in that scope without the usual
member access syntax.

For example:

union foo

{

struct

{
int a;
int b;
Vi
char c¢;
} bar;
char c;

bar.a = ¢; /* 'a' is a member of the anonymous structure
located inside 'bar' */

A structure for which objects or pointers are declared is not an anonymous structure.
For example:

union foo

{

struct
int a;
int b;
} £, *ptr;
char c¢;
} bar;
char c:
bar.a = c; /* error */

bar.ptr->a = ¢; /* ok */

The assignment to bar . a is illegal since the member name is not associated with any
particular object.

© 2004 Microchip Technology Inc. DS51288C-page 19

MPLAB® C18 C Compiler User’s Guide

2.8.2 Inline Assembly

MPLAB C18 provides an internal assembler using a syntax similar to the MPASM
assembler. The block of assembly code must begin with _asm and end with _endasm.
The syntax within the block is:

[label:] [<instruction> [argl[, arg2[, arg3]]]]
The internal assembler differs from the MPASM assembler as follows:

* No directive support
» Comments must be C or C++ notation
* Full text mnemonics must be used for table reads/writes. i.e.,
- TBLRD
- TBLRDPOSTDEC
- TBLRDPOSTINC
- TBLRDPREINC
- TBLWT
- TBLWTPOSTDEC
- TBLWTPOSTINC
- TBLWTPREINC
* No defaults for instruction operands — all operands must be fully specified
 Default radix is decimal

+ Literals are specified using C radix notation, not MPASM assembler notation. For
example, a hex number should be specified as 0x1234, not H' 1234 ".

» Label must include colon

* Indexed addressing syntax (i.e., [1) is not supported — must specify literal and
access bit (e.g., specify as CLRF 2, 0, not CLRF [2])

For example:
_asm
/* User assembly code */
MOVLW 10 // Move decimal 10 to count

MOVWF count, 0

/* Loop until count is 0 */

start:
DECFSZ count, 1, 0
GOTO done
BRA start
done:
_endasm

It is generally recommended to limit the use of inline assembly to a minimum. Any
functions containing inline assembly will not be optimized by the compiler. To write large
fragments of assembly code, use the MPASM assembler and link the modules to the C
modules using the MPLINK linker.

DS51288C-page 20 © 2004 Microchip Technology Inc.

Language Specifics

29 PRAGMAS

291 #pragma sectiontype

The section declaration pragmas change the current section into which MPLAB C18
will allocate information of the associated type.

A section is a portion of an application located at a specific address of memory.
Sections can contain code or data. A section can be located in either program or data
memory. There are two types of sections for each type of memory.
* program memory

- code — contains executable instructions

- romdata — contains variables and constants
+ data memory

- udata — contains statically allocated uninitialized user variables

- idata - contains statically allocated initialized user variables
Sections are absolute, assigned or unassigned. An absolute section is one that is given
an explicit address via the =address of the section declaration pragma. An assigned

section is one that is ascribed to a specific section via the SECTION directive of the
linker script. An unassigned section is one that is neither absolute nor assigned.

2911 SYNTAX

section-directive:

pragma udata [aftribute-list] [section-name [=address]]
| # pragma idata [affribute-list] [section-name [=address]]
| # pragma romdata [overlay] [section-name [=address]]
| # pragma code [overlay] [section-name [=address]]

attribute-list:

attribute
| attribute-list attribute

attribute:

access
| overlay

section-name: C identifier

address: integer constant

© 2004 Microchip Technology Inc. DS51288C-page 21

MPLAB® C18 C Compiler User’s Guide

2912 SECTION CONTENTS

A code section contains executable content, located in program memory. A
romdata section contains data allocated into program memory (normally variables
declared with the rom qualifier). For additional information on romdata usage (e.g., for
memory-mapped peripherals) see the MPLINK linker’s portion of the MPASM™ User's
Guide with MPLINK™ and MPLIB™ (DS33014). A udata section contains uninitialized
global data statically allocated into data memory. An idata section contains initialized
global data statically allocated into data memory.

Table 2-6 shows which section each of the objects in the following example will be
located in:

rom int ri;

rom char rc = 'A';
int ui;

char uc;

int ii = 0;

char ic = 'A';

void foobar (void)

{

static rom int foobar ri;
static rom char foobar rc = 'Z';

}

void foo (void)

{

static int foo_ ui;
static char foo uc;

}

void bar (void)

static int bar_ii = 5;
static char bar ic = 'Z';

DS51288C-page 22

© 2004 Microchip Technology Inc.

Language Specifics

TABLE 2-6: OBJECTS’ SECTION LOCATION

Object Section Location
ri romdata
rc romdata
foobar ri romdata
foobar rc romdata
ui udata
uc udata
foo ui udata
foo uc udata
ii idata
ic idata
bar ii idata
bar ic idata
foo code
bar code
foobar code

2.9.1.3 DEFAULT SECTIONS
A default section exists for each section type in MPLAB C18 (see Table 2-7).

TABLE 2-7: DEFAULT SECTION NAMES

Section Type Default Name
code .code_filename
romdata .romdata filename
udata .udata filename
idata .idata filename

Note: filename is the name of the object file being generated. For example,
“mccl8 foo.c -fo=foo.o” will produce an object file with a default code
section named “. code foo.0".
Specifying a section name that has been previously declared causes MPLAB C18 to
resume allocating data of the associated type into the specified section. The section
attributes must match the previous declaration; otherwise, an error will occur
(see Appendix D.1 “Errors”).

© 2004 Microchip Technology Inc. DS51288C-page 23

MPLAB® C18 C Compiler User’s Guide

A section pragma directive with no name resets the allocation of data of the associated
type to the default section for the current module. For example:

/*

* The following statement changes the current code

* section to the absolute section high_ vector

*/

#pragma code high vector=0x08

/*

* The following statement returns to the default code
* gection

*/

#pragma code

When the MPLAB C18 compiler begins compiling a source file, it has default data
sections for both initialized and uninitialized data. These default sections are located in
either access or non-access RAM depending on whether the compiler was invoked
with a -0a+ option or not, respectively. The -0a+ command-line option applies only
when operating in Non-extended mode (see Section 1.2.5 “Selecting the Mode”).
When a #pragma udata [access] name directive is encountered in the source
code, the current uninitialized data section becomes name, which is located in access
or non-access RAM depending on whether the optional access attribute was
specified. The same is true for the current initialized data section when a

#pragma idata [access] name directive is encountered.

Objects are placed in the current initialized data section when an object definition with
an explicit initializer is encountered. Objects without an explicit initializer in their
definition are placed in the current uninitialized data section. For example, in the
following code snippet, 1 would be located in the current initialized data section and
u would be placed in the current uninitialized data section.

int 1 = 5;

int u;

void main (void)

{
}

If an object's definition has an explicit far qualifier (see Section 2.4 “Storage
Qualifiers”), the object is located in non-access memory. Similarly, an explicit near
qualifier (see Section 2.4 “Storage Qualifiers”) tells the compiler that the object is
located in access memory. If an object's definition has neither the near or far qualifier,
the compiler looks at whether the -0a+ option was specified on the command line.

DS51288C-page 24 © 2004 Microchip Technology Inc.

Language Specifics

2.9.14 SECTION ATTRIBUTES

The #pragma sectiontype directive may optionally include two section attributes —
access Oor overlay.

2.9.1.4.1 access

The access attribute tells the compiler to locate the specified section in an access
region of data memory (see the device data sheets or the PICmicro® 18C MCU Family
Reference Manual (DS39500) for more on access data memory).

Data sections with the access attribute will be placed into memory regions that are
defined as ACCESSBANK in the linker script file. These regions are those accessed via
the access bit of an instruction, i.e., no banking is required (see the device data sheet).
Variables located in an access section must be declared with the near keyword. For
example:

#pragma udata access my access

/* all accesses to these will be unbanked */
near unsigned char avl, av2;

29.14.2 overlay

The overlay attribute permits other sections to be located at the same physical
address. This can conserve memory by locating variables to the same location (as long
as both are not active at the same time.) The overlay attribute can be used in
conjunction with the access attribute.

In order to overlay two sections, four requirements must be met:
1. Each section must reside in a different source file.
2. Both sections must have the same name.

3. Ifthe access attribute is specified with one section, it must be specified with the
other.

4. If an absolute address is specified with one section, the same absolute address
must be specified with the other.

Code sections that have the overlay attribute can be located at an address that
overlaps other overlay code sections. For example:

file1.c:

#pragma code overlay my overlay scn=0x1000
void f (void)

{

} e
file2.c:

#pragma code overlay my overlay scn=0x1000
void g (void)

{
o

© 2004 Microchip Technology Inc. DS51288C-page 25

MPLAB® C18 C Compiler User’s Guide

Data sections that have the overlay attribute can be located at an address that
overlaps other overlay data sections. This feature can be useful for allowing a single
data range to be used for multiple variables that are never active simultaneously. For
example:

filel.c:

#pragma udata overlay my overlay data=0xlfc
/* 2 bytes will be located at 0xlfc and 0xlfe */
int int_varl, int_var2;

file2.c:

#pragma udata overlay my overlay data=0xlfc
/* 4 bytes will be located at Oxlfc */
long long var;

For more information on the handling of overlay sections see MPASM™ User's Guide
with MPLINK™ and MPLIB™ (DS33014).

2915 LOCATING CODE

Following a #ipragma code directive, all generated code will be assigned to the
specified code section until another #pragma code directive is encountered. An
absolute code section allows the location of code to a specific address. For example:

#pragma code my code=0x2000
will locate the code section my code at program memory address 0x2000.

The linker will enforce that code sections be placed in program memory regions;
however, a code section can be located in a specified memory region. The SECTION
directive of the linker script is used to assign a section to a specific memory region.
The following linker script directive assigns code section my codel to memory region
pagel:

SECTION NAME=my codel ROM=pagel

29.1.6 LOCATING DATA

Data can be placed in either data or program memory with the MPLAB C18 compiler.
Data that is placed in on-chip program memory can be read but not written without
additional user-supplied code. Data placed in external program memory can generally
be either read or written without additional user-supplied code.

For example, the following declares a section for statically allocated uninitialized data
(udata) at absolute address 0x120:

#pragma udata my new data section=0x120

The rom keyword tells the compiler that a variable should be placed in program
memory. The compiler will allocate this variable into the current romdata type section.
For example:

#pragma romdata const table
const rom char my const array[10] = {o, 1, 2, 3, 4, 5,
6, 7, 8, 9};

/* Resume allocation of romdata into the default section */
#pragma romdata

The linker will enforce that romdata sections be placed in program memory regions
and that udata and idata sections be placed in data memory regions; however, a
data section can also be located in a specified memory region. The SECTION directive
of the linker script is used to assign a section to a specific memory region. The following
assigns udata section my data to memory region gpr1l:

SECTION NAME=my data RAM=gprl

DS51288C-page 26

© 2004 Microchip Technology Inc.

Language Specifics

29.2 #pragma interruptlow fname/
#pragma interrupt fname

The interrupt pragma declares a function to be a high-priority interrupt service
routine (ISR); the interruptlow pragma declares a function to be a low-priority
interrupt service routine.

An interrupt suspends the execution of a running application, saves the current context
information and transfers control to an ISR so that the event may be processed. Upon
completion of the ISR, previous context information is restored and normal execution
of the application resumes. The minimal context saved and restored for an interrupt is
WREG, BSR and STATUS. A high-priority interrupt uses the shadow registers to save and
restore the minimal context, while a low-priority interrupt uses the software stack to
save and restore the minimal context. As a consequence, a high-priority interrupt
terminates with a fast “return from interrupt”, while a low-priority interrupt terminates
with a normal “return from interrupt”. Two MOVFF instructions are required for each byte
of context preserved via the software stack except for WREG, which requires a MOVWF
instruction and a MOVF instruction; therefore, in order to preserve the minimal context,
a low-priority interrupt has an additional 10-word overhead beyond the requirements of
a high-priority interrupt.

Interrupt service routines use a temporary data section that is distinct from that used
by normal C functions. Any temporary data required during the evaluation of
expressions in the interrupt service routine is allocated in this section and is not
overlaid with the temporary locations of other functions, including other interrupt
functions. The interrupt pragmas allow the interrupt temporary data section to be
named. If this section is not named, the compiler temporary variables are created in a
udata section named fname_tmp. For example:

void foo (void) ;
#pragma interrupt foo

void foo (void)

{
}

The compiler temporary variables for interrupt service routine £oo will be placed in the
udata section foo_tmp.

/* perform interrupt function here */

© 2004 Microchip Technology Inc. DS51288C-page 27

MPLAB® C18 C Compiler User’s Guide

29.21 SYNTAX

interrupt-directive:

pragma interrupt function-name [tmp-section-name] [save=Save-list]
| # pragma interruptlow function-name [tmp-section-name] [save=save-list]

save-list:
save-specifier
| save-list, save-specifier
save-specifier:
symbol-name
| section("section-name")
function-name: C identifier — names the C function serving as an ISR.

tmp-section-name: C identifier — names the section in which to allocate the ISR's
temporary data

symbol -name: C identifier —names the variable that will be restored following interrupt
processing

section-name: C identifier with the exception that the first character can be a dot (.)
— names the section that will be restored following interrupt processing

29.2.2 INTERRUPT SERVICE ROUTINES

An MPLAB C18 ISR is like any other C function in that it can have local variables
and access global variables; however, an ISR must be declared with no parameters
and no return value since the ISR, in response to a hardware interrupt, is invoked
asynchronously. Global variables that are accessed by both an ISR and mainline
functions should be declared volatile.

ISR's should only be invoked through a hardware interrupt and not from other C
functions. An ISR uses the return from interrupt (RETFIE) instruction to exit from the
function rather than the normal RETURN instruction. Using a fast RETFIE instruction out
of context can corrupt WREG, BSR and STATUS.

DS51288C-page 28

© 2004 Microchip Technology Inc.

Language Specifics

2.9.2.3 INTERRUPT VECTORS

MPLAB C18 does not automatically place an ISR at the interrupt vector. Commonly, a
GOTO instruction is placed at the interrupt vector for transferring control to the ISR
proper. For example:

#include <pl8cxxx.h>

void low isr(void) ;
void high isr(void) ;

* For PIC18 devices the low interrupt vector is found at
* 00000018h. The following code will branch to the
* low_interrupt service routine function to handle
* interrupts that occur at the low vector.
*/
#pragma code low vector=0x18
void interrupt at low vector (void)

{

_asm GOTO low_isr _endasm

}

#pragma code /* return to the default code section */

#pragma interruptlow low isr
void low isr (void)
{
/* ... %/
}

* For PIC18 devices the high interrupt vector is found at
* 00000008h. The following code will branch to the
* high interrupt service routine function to handle
* interrupts that occur at the high vector.
*/
#pragma code high vector=0x08
void interrupt_at high vector (void)

{

_asm GOTO high isr endasm

}

#pragma code /* return to the default code section */

#pragma interrupt high isr
void high isr (void)
{
/* .. %/
}

For a complete example, see Chapter 5. “Sample Application”

© 2004 Microchip Technology Inc. DS51288C-page 29

MPLAB® C18 C Compiler User’s Guide

29.24 ISR CONTEXT SAVING

MPLAB C18 will preserve a basic context by default (see Section 3.4 “Compiler-
Managed Resources”), and the save= clause allows additional arbitrary symbols to
be saved and restored by the function.

To save a user-defined global variable named myint, the following pragma directive
would be used:

#pragma interrupt high interrupt service routine save=myint

In addition to variables, entire data sections can also be named in the save= clause.
For example, to save a user-defined section named mydata, the following pragma
directive would be used:

#pragma interrupt high interrupt service routine save=section("mydata")
If an interrupt service routine calls another function, the normal functions' temporary
data section (which is named . tmpdata) should be saved using a

save=section (".tmpdata") qualifier on the interrupt pragma directive. For
example:

#pragma interrupt high interrupt service routine save=section(".tmpdata")
If the ISR changes any file registers other than the basic context, then they should be

named in the save= clause. The generated code should be examined to determine
which file registers are used and need to be saved.

Note: If an ISR calls a function that returns a value less than or equal to 32 bits
in size, the locations associated with the return value (see Section 3.2.1
“Return Values”) should be specified in the save= list of the interrupt
pragma.

If an interrupt service routine calls a function that returns 16-bit data, the PROD file
register should be saved using a save=PROD qualifier on the interrupt pragma
directive. For example:

#pragma interruptlow low interrupt service routine save=PROD

If an interrupt service routine uses math library functions or calls a function that
returns 24- or 32-bit data, the math data section (which is named MATH DATA) should
be saved using a save=section ("MATH DATA") qualifier on the interrupt pragma
directive. For example:

#fpragma interrupt high interrupt service routine save=section ("MATH DATA")
All previous examples show a single value being saved. Multiple variables and sections
may be saved using the same save= qualifier. If an interrupt service routine used the
PROD file register, the . tmpdata section, the myint variable, and the mydata section,
these should be saved using the save=PROD, section (".tmpdata"), myint,
section ("mydata™") qualifier on the interrupt pragma directive. For example:

#pragma interrupt isr save=PROD, section(".tmpdata"), myint, section("mydata")

DS51288C-page 30 © 2004 Microchip Technology Inc.

Language Specifics

2.9.25 LATENCY

The time between when an interrupt occurs and when the first ISR instruction is
executed is the latency of the interrupt. The three elements that affect latency are:

1. Processor servicing of interrupt: The amount of time it takes the processor to
recognize the interrupt and branch to the first address of the interrupt vector. To
determine this value refer to the processor data sheet for the specific processor
and interrupt source being used.

2. Interrupt vector execution: The amount of time it takes to execute the code at
the interrupt vector that branches to the ISR.

3. ISR prologue code: The amount of time it takes MPLAB C18 to save the
compiler managed resources and the data in the save= list.

2.9.2.6 NESTING INTERRUPTS

Low-priority interrupts may be nested since active registers are saved onto the
software stack. Only a single instance of a high-priority interrupt service routine may be
active at a time since these ISR's use the single-level hardware shadow registers.

If nesting of low-priority interrupts is desired, a statement to set the GIEL bit can be
added near the beginning of the ISR. See the processor data sheet for details.
293 #pragma varlocate bank variable-name

#pragma varlocate "section-name" variable-name

The varlocate pragma tells the compiler where a variable will be located at link time,
enabling the compiler to perform more efficient bank switching.

The varlocate specifications are not enforced by the compiler or linker. The sections
that contain the variables should be assigned to the correct bank explicitly in the linker
script or via absolute sections in the module(s) where they are defined.

29.3.1 SYNTAX

variable-locate-directive:

pragma varlocate bank variable-namel, variable-name...]
| # pragma varlocate "section-name" variable-namel, variable-name...]

bank: integer constant
variable-name: C identifier

section-name: C identifier

© 2004 Microchip Technology Inc. DS51288C-page 31

MPLAB® C18 C Compiler User’s Guide

2.9.3.2 EXAMPLE USING # pragma varlocate bank variable-name

In one file, c1 and c2 are explicitly assigned to bank 1.

#pragma udata bankl=0x100
signed char c1l;
signed char c2;

In a second file, the compiler is told that both c¢1 and c2 are located in bank 1.

#pragma varlocate 1 cl
extern signed char cl;

#pragma varlocate 1 c2
extern signed char c2;

void main (void)

{

cl += 5;

/* No MOVLB instruction needs to be generated here. */

c2 += 5;
}
When c1 and c2 are used in the second file, the compiler knows that both variables
are in the same bank and does not need to generate a second MOVLB instruction when
using c2 immediately after c1.

2.9.3.3 EXAMPLE USING # pragma varlocate "section-name" variable-name

In one file, ¢3 and c4 are created in the udata section my section.

#pragma udata my section
signed char c3;

signed char c4;

#pragma udata

In a second file, the compiler is told that both ¢3 and c4 are located in the udata
section my section.
#pragma varlocate "my section" c3, c4

extern signed char c3;
extern signed char c4;

void main (void)

{

c3 += 5;

/* No MOVLB instruction needs to be generated here. */

c4d += 5;
}
When ¢3 and c4 are used in the second file, the compiler knows that both variables
are in the same section and does not need to generate a second MOVLB instruction
when using c4 immediately after c3.

DS51288C-page 32

© 2004 Microchip Technology Inc.

Language Specifics

210 PROCESSOR-SPECIFIC HEADER FILES

The processor-specific header file is a C file that contains external declarations for the
special function registers, which are defined in the register definitions file (see
Section 2.11 “Processor-specific Register Definitions Files”). For example, in the
PIC18C452 processor-specific header file, PORTA is declared as:

extern volatile near unsigned char PORTA;
and as:

extern volatile near union {
struct {
unsigned RAO:1
unsigned RAl1:1
unsigned RA2:1
unsigned RA3:1
unsigned RA4:1
unsigned RA5:1
unsigned RA6:1
b
struct {
unsigned ANO:1
unsigned AN1:1
unsigned AN2:1
unsigned AN3:1;
unsigned TOCKI:1;
unsigned SS:1;
unsigned 0SC2:1;
b
struct {
unsigned :2;
unsigned VREFM:1;
unsigned VREFP:1;
unsigned :1;
unsigned AN4:1;
unsigned CLKOUT:1;
b
struct {
unsigned :5;
unsigned LVDIN:1;
b

} PORTAbits ;

The first declaration specifies that PORTA is a byte (unsigned char). The extern
modifier is needed since the variables are declared in the register definitions file. The
volatile modifier tells the compiler that it cannot assume that PORTA retains values
assigned to it. The near modifier specifies that the port is located in access RAM.

The second declaration specifies that PORTAbi ts is a union of bit-addressable
anonymous structures (see Section 2.8.1 “Anonymous Structures”). Since individ-
ual bits in a special function register may have more than one function (and hence more
than one name), there are multiple structure definitions inside the union all referring to
the same register. Respective bits in all structure definitions refer to the same bit in the
register. Where a bit has only one function for its position, it is simply padded in other
structure definitions. For example, bits 1 and 2 on PORTA are simply padded in the third
and fourth structures because they only have two names, whereas, bit 6 has four
names and is specified in each of the structures.

© 2004 Microchip Technology Inc. DS51288C-page 33

MPLAB® C18 C Compiler User’s Guide

Any of the following statements can be written to use the PORTA special function

register:

PORTA = 0x34; /* Assigns the value 0x34 to the port */

PORTAbits.ANO 1; /* Sets the ANO pin high */

PORTAbits.RAO0 = 1; /* Sets the RAO pin high, same as above
statement */

In addition to register declarations, the processor-specific header file defines inline
assembly macros. These macros represent certain PICmicro MCU instructions that an
application may need to execute from C code. Although, these instructions could be
included as inline assembly instructions, as a convenience they are provided as C
macros (see Table 2-8).

Lastly, the processor-specific header file contains a macro, CONFIG DECL, and
#defines for each setting that allow the device configuration to be specified. See
Section 2.12 “Configuration Words” for more information.

In order to use the processor-specific header file, choose the header file that pertains
to the device being used (e.g., if using a PIC18C452, #include <pl8c452.h>inthe
application source code). The processor-specific header files are located in the
c:\mcc18\h directory, where c:\mcc18 is the directory where the compiler is
installed. Alternatively, #include <pl8cxxx.h> will include the proper
processor-specific header file based on the processor selected on the command line
via the -p command-line option.

TABLE 2-8:

C MACROS PROVIDED FOR PICmicro MCU INSTRUCTIONS

Instruction Macro(")

Action

Nop () Executes a no operation (NOP)
ClrWdt () Clears the Watchdog Timer (CLRWDT)
Sleep () Executes a SLEEP instruction

Reset () Executes a device reset (RESET)

Rlcf (var, dest, access) (&3 Rotates var to the left through the carry bit.
Rlncf (var, dest, access) (%3 Rotates var to the left without going through the
carry bit
Rrcf (var, dest, access) (&3 Rotates var to the right through the carry bit
Rrncf (var, dest, access) (%3 Rotates var to the right without going through the
carry bit
(2,3)

Swapf (var, dest, access)

Swaps the upper and lower nibble of var

Note 1: Using any of these macros in a function affects the ability of the MPLAB C18
compiler to perform optimizations on that function.
2: var must be an 8-bit quantity (i.e., char) and not located on the stack.
3: Ifdestis 0, the result is stored in WREG, and if dest is 1, the result is stored in var.
If access is 0, the access bank will be selected, overriding the BSR value. If
access is 1, then the bank will be selected as per the BSR value.

DS51288C-page 34

© 2004 Microchip Technology Inc.

Language Specifics

2.11 PROCESSOR-SPECIFIC REGISTER DEFINITIONS FILES

The processor-specific register definitions file is an assembily file that contains
definitions for all the special function registers on a given device. The processor-
specific register definitions file, when compiled, will become an object file that will need
to be linked with the application (e.g., p18c452.asm compiles to p18c452.0). This
object file is contained in p18xxxx.1ib (e.g., p18c452.0 is contained in
pl8c452.1ib).

The source code for the processor-specific register definitions files is found in both the
c:\mccl8\src\traditional\proc and c:\mccl8\src\extended\proc
directories. Compiled object code is found in the ¢ : \mcc18\1ib directory, where
c:\mcc18 is the directory where the compiler is installed.

For example, PORTA is defined in the PIC18C452 processor-specific register
definitions file as:

SFR_UNBANKEDO UDATA ACS H'f80'
PORTA
PORTAbits RES 1 ; 0x£f80

The first line specifies the file register bank where PORTA is located and the starting
address for that bank. PORTA has two labels, PORTAbits and PORTA, both referring to
the same location (in this case 0x£80).

2.12 CONFIGURATION WORDS

The default linker script for each part contains a section named CONFIG. For example,
the p18c452. 1kr script contains the following statements:

CODEPAGE NAME=config START=0x300000 END=0x300007 PROTECTED

SECTION NAME=CONFIG ROM=config

The #pragma romdata CONFIG directive is used to set the current romdata section
to the section named CONFIG. The configuration for the device can be specified using
the CONFIG DECL macroand the #defines located in the processor-specific header
file. The following example specifies the configuration specified in Table 2-9.

#include <pl8c452.h>

#pragma romdata CONFIG

_CONFIG DECL (_CP_ON 1L,
_0SCS ON_1H & _OSC _LP 1H,
_PWRT ON 2L & BOR OFF 2L & _BORV 42 2L,
_WDT _OFF 2H & WDTPS 1 2H,
_CCP2MUX_OFF_3H,
_CONFIG4L DEFAULT) ;

#pragma romdata

void main (void)

{
}

© 2004 Microchip Technology Inc. DS51288C-page 35

MPLAB® C18 C Compiler User’s Guide

TABLE 2-9: EXAMPLE CONFIGURATION

Setting Configuration Specified
_CP _ON_1L All of program memory is code-protected
_0SCS _ON_1H Oscillator system clock switch option is enabled

(oscillator switching is enabled)

_0SC_LP_1H LP oscillator
_PWRT_ON_2L Power-up timer enabled
_BOR_OFF_2L Brown-out reset disabled
_BORV_42 2L VBOR set to 4.2V
_WDT OFF_2H Watchdog Timer disabled
_WDTPS_1 2H Watchdog Timer postscale 1:1
_CCP2MUX_OFF_3H CCP2 input/output is multiplexed with RB3

CONFIG4L DEFAULT Default setting for this configuration byte — stack full/underflow
will cause Reset

DS51288C-page 36 © 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER

MICROCHIP USER’S GUIDE

Chapter 3. Run-time Model

This section discusses the run-time model or the set of assumptions that the MPLAB
C18 compiler operates, including information about how the MPLAB C18 compiler uses
the resources of the PIC18 PICmicro microcontrollers.

3.1 MEMORY MODELS

MPLAB C18 provides full library support for both a small and a large memory model
(see Table 3-1). The small memory model is selected using the -ms command-line
option and the large memory model using the -m1 option. If neither is provided, the
small memory model is used by default.

TABLE 3-1: MEMORY MODEL SUMMARY
Memory Model Comma_md-line Default ROM Size of Pointers to
Switch Range Qualifier Program Space
small -ms near 16 bits
large -ml far 24 bits

The difference between the small and large models is the size of pointers that point to
program memory. In the small memory model, both function and data pointers that
point to program memory use 16 bits. This has the effect of restricting pointers to
addressing only the first 64k of program memory in the small model. In the large
memory model, 24 bits are used. Applications using more than 64k of program memory
must use the large memory model.

The memory model setting can be overridden on a case-by-case basis by using the
near or far qualifier when declaring a pointer into program space. Pointers to near
memory use 16 bits as in the small memory model, and pointers to far memory use
24 bits as in the large memory model.

The following example creates a pointer to program memory that can address up to
and beyond 64k of program memory space, even when the small memory model is
being used':

far rom *pgm ptr;

The following example creates a function pointer that can address up to and beyond
64k of program memory space, even when the small memory model is being used?:

far rom void (*fp) (void);

If the same memory model is not used for all files in a project, all global pointers to
program memory should be declared with explicit near or far qualifiers so that they
are accessed correctly in all modules. The pre-compiled libraries distributed with
MPLAB C18 can be used with either the small or large memory models.

1. Following the use of a far data pointer in a small memory model program, the TBLPTRU byte must be
cleared by the user. MPLAB C18 does not clear this byte.

2. Following the use of a £ar function pointer in a small memory model program, the PCLATU byte must be
cleared by the user. MPLAB C18 does not clear this byte.

© 2004 Microchip Technology Inc. DS51288C-page 37

MPLAB® C18 C Compiler User’s Guide

3.2 CALLING CONVENTIONS

The MPLAB C18 software stack is an upward growing stack data structure on which
the compiler places function arguments and local variables that have the storage class
auto. The software stack is distinct from the hardware stack upon which the PICmicro
microcontroller places function call return addresses. Figure 3-1 shows an example of
the software stack.

FIGURE 3-1: EXAMPLE OF SOFTWARE STACK
Unused Location -¢— FSR1 (Stack Pointer)
Increasing Function Context
Addresses (Local Variables and -4 FSR2 (Frame Pointer)
Parameters)

The stack pointer (FSR1) always points to the next available stack location. MPLAB
C18 uses FSR2 as the frame pointer, providing quick access to local variables and
parameters. When a function is invoked, its stack-based arguments are pushed onto
the stack in right-to-left order and the function is called. The leftmost function argument
is on the top of the software stack upon entry into the function. Figure 3-2 shows the
software stack immediately prior to a function call.

FIGURE 3-2: EXAMPLE OF SOFTWARE STACK IMMEDIATELY PRIOR TO
FUNCTION CALL

A Unused Location <4 FSR1 (Stack Pointer)

Function Parameter 1

Function Parameter 2

Function Parameter n

Increasing Addresses

Function Context <& FSR2 (Frame Pointer)

The frame pointer references the location on the stack that separates the stack-based
arguments from the stack-based local variables. Stack-based arguments are located at
negative offsets from the frame pointer, and stack based local variables are located at
positive offsets from the frame pointer. Immediately upon entry into a C function, the
called function pushes the value of FSR2 onto the stack and copies the value of FSR1
into FSR2, thereby saving the context of the calling function and initializing the frame
pointer of the current function. Then the total size of stack-based local variables for the
function is added to the stack pointer, allocating stack space for those variables.
References to stack-based local variables and stack-based arguments are resolved
according to offsets from the frame pointer. Figure 3-3 shows a software stack following
a call to a C function.

DS51288C-page 38

© 2004 Microchip Technology Inc.

Run-time Model

FIGURE 3-3: EXAMPLE OF SOFTWARE STACK FOLLOWING A
C FUNCTION CALL

A Unused Location & FSR1 (Stack Pointer)

Local Variable n

Local Variable 2

Local Variable 1 <& FSR2 (Frame Pointer)

Previous Frame Pointer

Called Function Parameter 1

Increasing Addresses

Called Function Parameter 2

Called Function Parameter n

Caller Function’s Context

3.21 Return Values

The location of the return value is dependent on the size of the return value. Table 3-2
details the location of the return value based on its size.

TABLE 3-2: RETURN VALUES

Return Value Size Return Value Location
8 bits WREG
16 bits PRODH:PRODL
24 bits [Non-extended mode] (AARGB2+2):(AARGB2+1):AARGB2
[Extended mode] RETVAL2: RETVAL1l: RETVALO
32 bits [Non-extended mode] (ARARGB3+3):(AARGB3+2):(AARGB3+1):AARGB3
[Extended mode] RETVAL3: RETVAL2: RETVALL: RETVALO
> 32 bits on the stack, and FSR0 points to the return value

© 2004 Microchip Technology Inc. DS51288C-page 39

MPLAB® C18 C Compiler User’s Guide

3.22 Managing the Software Stack

The stack is sized and placed via the linker script with the STACK directive. The STACK
directive has two arguments: STZE and RAM to control the allocated stack size and its
location, respectively. For example, to allocate a 128 byte stack and place that stack in
the memory region gpr3:

STACK SIZE=0x80 RAM=gpr3

MPLAB C18 supports stack sizes greater than 256 bytes. The default linker scripts
allocate one memory region per bank of memory, so to allocate a stack larger than 256
bytes requires combining two or more memory regions, as the stack section cannot
cross memory region boundaries. For example, the default linker script for the
PIC18C452 contains the definitions:

DATABANK NAME=gpr4 START=0x400 END=0x4ff
DATABANK NAME=gpr5 START=0x500 END=0x5ff

STACK SIZE=0x100 RAM=gpr5
To allocate a 512 byte stack in banks 4 and 5, these definitions should be replaced with:

DATABANK NAME=stackregion START=0x400 END=0x5ff PROTECTED
STACK SIZE=0x200 RAM=stackregion

If a stack larger than 256 bytes is used, the - 1s option must be given to the compiler.
There is a slight performance penalty that is incurred when using a large stack, as both
bytes of the frame pointer (FSR2L and FSR2H) must be incremented/decremented
when doing a push/pop, rather than just the low-byte.

The size of the software stack required by an application varies with the complexity of
the program. When nesting function calls, all auto parameters and variables of the
calling function will remain on the stack. Therefore, the stack must be large enough to
accommodate the requirements by all functions in a call tree.

MPLAB C18 supports parameters and local variables allocated either on the software
stack or directly from global memory. The static keyword places a local variable or
a function parameter in global memory instead of on the software stack. In general,
stack-based local variables and function parameters require more code to access than
static local variables and function parameters (see Section 2.3.2 “static
Function Arguments”). Functions that use stack-based variables are more flexible in
that they can be reentrant and/or recursive.

3.2.3 Mixing C and Assembly
3.2.3.1 CALLING C FUNCTIONS FROM ASSEMBLY

When calling C functions from assembly:

» C functions are inherently global, unless defined as static.

» The C function name must be declared as an extern symbol in the assembly file.
* A CALL or an RCALL must be used to make the function call.

1. static parameters are valid only when the compiler is operating in Non-extended mode
(see Section 1.2.5 “Selecting the Mode”).

DS51288C-page 40 © 2004 Microchip Technology Inc.

Run-time Model

3.2.3.1.1 auto Parameters

auto parameters are pushed onto the software stack from right to left. For multi-byte
data, the low byte is pushed onto the software stack first.

EXAMPLE 3-1:

Given the following prototype for a C function:
char add (auto char x, auto char y);

to call the function add with values x = 0x61andy = 0x65, the value for y must be
pushed onto the software stack followed by the value of x. The return value, since it is
8 bits, will be returned in WREG (see Table 3-2), i.e.,

EXTERN add ; defined in C module
MOVLW 0x65
MOVWFEF POSTINC1 ; vy
MOVLW 0x61
MOVWF POSTINC1l ; x = 0x61 pushed onto stack

CALL add
MOVWF result ; result is returned in WREG

0x65 pushed onto stack

EXAMPLE 3-2:

Given the following prototype for a C function:
int sub (auto int x, auto int y);

to call the function sub with values x = 0x7861andy = 0x1265, the value fory
must be pushed onto the software stack followed by the value of x. The return value,
since it is 16 bits, will be returned in PRODH : PRODL (see Table 3-2), i.e.,

EXTERN sub ; defined in C module
MOVLW 0x65
MOVWEF POSTINC1
MOVLW 0x12
MOVWF POSTINC1 ; vy = 0x1265 pushed onto stack

MOVLW 0x61

MOVWEF POSTINC1

MOVLW 0x78

MOVWF POSTINC1 ; X = 0x7861 pushed onto stack

CALL sub

MOVFF PRODL, result

MOVFF PRODH, result+1l ; result is returned in PRODH:PRODL

© 2004 Microchip Technology Inc. DS51288C-page 41

MPLAB® C18 C Compiler User’s Guide

3.2.3.1.2 static Parameters

static parameters are allocated globally, enabling direct access. static parameters
are valid only when the compiler is operating in Non-extended mode (see Section
1.2.5 “Selecting the Mode”). The naming convention for static parameters is
___function name:n, where function name is replaced by the name of the
function and n is the parameter position, with numbering starting from 0. For example,
given the following prototype for a C function:

char add (static char x, static char vy);

the value for y is accessed by using add: 1, and the value of x is accessed by using
add:O0.

Note: Since ‘:’is not a valid character in the MPASM assembler’s labels, access-
ing static parameters in assembly functions is not supported.

3.2.3.2 CALLING ASSEMBLY FUNCTIONS FROM C

When calling assembly functions from C:

» The function label must be declared as global in the ASM module.
* The function must be declared as extern in the C module.

» The function must maintain the MPLAB C18 compiler's run-time model
(e.g., return values must be returned in the locations specified in Table 3-2).

» The function is called from C using standard C function notation.

EXAMPLE 3-3:

Given the following function written in assembly:
UDATA_ACS

delay temp RES 1
CODE

asm delay
SETF delay temp

not done
DECF delay temp
BNZ not_done
done
RETURN
GLOBAL asm_delay ; export so linker can see it
END

to call the function asm_delay from a C source file, an external prototype for the
assembly function must be added, and the function called using standard C function
notation:

/* asm _delay is found in an assembly file */
extern void asm delay (void) ;

void main (void)

{
}

asm _delay ();

DS51288C-page 42

© 2004 Microchip Technology Inc.

Run-time Model

EXAMPLE 3-4:

Given the following function written in assembly,
INCLUDE "pl8c452.inc"

CODE
asm_timed delay
not_ done
; Figure 3-2 is what the stack looks like upon
; entry to this function.
; ‘time’ is passed on the stack and must be >= 0
MOVLW Oxff
DECF PLUSW1, 0x1, 0xO0
BNZ not_ done
done
RETURN

; export so linker can see it
GLOBAL asm_timed delay
END

to call the function asm_timed delay from a C source file, an external prototype for
the assembly function must be added, and the function called using standard C
function notation:

/* asm_timed delay is found in an assembly file */
extern void asm timed delay (unsigned char) ;

void main (void)

{

asm_timed delay (0x80);

}
3.2.3.3 USING C VARIABLES IN ASSEMBLY

When using C variables in assembly:

» The C variable must have global scope in the C source file.
» The C variable must be declared as an extern symbol in the assembly file.

© 2004 Microchip Technology Inc. DS51288C-page 43

MPLAB® C18 C Compiler User’s Guide

EXAMPLE 3-5:

Given the following written in C:

unsigned int c_variable;

void main (void)

{
}

to modify the variable c_variable from assembly, an external declaration must be
added for the variable in the assembly source file:
EXTERN c_variable ; defined in C module
MYCODE CODE
asm_function
MOVLW Oxff
; put Oxffff in the C declared variable
MOVWF c_variable
MOVWF c_variable+1
done
RETURN

; export so linker can see it
GLOBAL asm_function
END

3.23.4 USING ASSEMBLY VARIABLES IN C

When using assembly variables in C:

» The variable must be declared as global in the ASM module.
» The variable must be declared as extern in the C module.

EXAMPLE 3-6:

Given the following written in assembly,

MYDATA UDATA
asm_variable RES 2 ; 2 byte variable

; export so linker can see it

GLOBAL asm_variable

END
to change the variable asm_variable from a C source file, an external declaration
must be added for the variable in the C source file. The variable can be used as if it
were a C variable:

extern unsigned int asm variable;

void change asm variable (void)

{

asm _variable = 0x1234;

}

DS51288C-page 44 © 2004 Microchip Technology Inc.

Run-time Model

3.3 STARTUP CODE

3.3.1 Default Behavior

The MPLAB C18 startup begins at the reset vector (address 0). The reset vector
jumps to a function that initializes FSR1 and FSR2 to reference the software stack,
optionally calls a function to initialize 1idata sections (data memory initialized data)
from program memory, and loops on a call to the application's main () function.

Whether the startup code initializes idata sections is determined by which startup
code module is linked with the application. The c018i.0and c018i_e.o modules
perform the initialization, while the c018.0 and c018_e.o modules do not. The
default linker scripts provided by MPLAB C18 link with either the c0181 .0 or
c0181i_e.o module depending on whether Non-extended mode or Extended mode is
being utilized, respectively.

The ANSI standard requires that all objects with static storage duration that are not
initialized explicitly are set to zero. With both the c018.0/c018 e.o and
c018i.0/c0181 e.o startup code modules, this requirement is not met. A third type
of startup module, c018iz.oand c018iz_e.o, is provided to meet this requirement.
If this startup code module is linked with the application, then, in addition to initializing
idata sections, all objects with static storage duration that are not initialized explicitly
are set to zero.

To perform initialization of data memory, the MPLINK linker creates a copy of initialized
data memory in program memory that the startup code copies to data memory. The
.cinit section is populated by the MPLINK linker to describe where the program
memory images should be copied. Table 3-3 describes the format of the .cinit sec-
tion.

TABLE 3-3: FORMAT OF .cinit

Field Description Size
num_init Number of sections 16 bit
from addr_0 Program memory start address of section 0 32 bit
to_addr 0 Data memory start address of section 0 32 bit
size 0 Number of data memory bytes to initialize for section 0 32 bit
£ rom_addr_nm Program memory start address of section n(?) 32 bit
to_addr_nm Data memory start address of section n(!) 32 bit
size_n<1) Number of data memory bytes to initialize for section oM 32 bit

Note 1: n=num init - 1

After the startup code sets up the stack and optionally copies initialized data, it calls the
main () function of the C program. There are no arguments passed to main ().
MPLAB C18 transfers control to main () via a looped call, i.e.:
loop:

// Call the user's main routine

main() ;
goto loop;

© 2004 Microchip Technology Inc. DS51288C-page 45

MPLAB® C18 C Compiler User’s Guide

3.3.2 Customization

To execute application-specific code immediately after a device reset but before any

other code generated by the compiler is executed, edit the desired startup file and add

the code to the beginning of the entry () function.

To customize the startup files if using Non-extended mode:

1. Gotothe c:\mcci8\src\traditional\startup directory, where
c:\mcc18 is the directory where the compiler is installed.

2. Editeitherc018.c,c018i.corc018iz.c toadd any customized startup code
desired.

3. Compile the updated startup file to generate either c018.0, c0181i.0or
c01l8iz.o.

4. Copy the startup module to ¢: \mcc18\1ib, where c:\mcc18 is the directory
where the compiler is installed.

To customize the startup files if using Extended mode:

1. Gotothe c:\mccl8\src\extended\startup directory, where c:\mcc18 is
the directory where the compiler is installed.

2. Editeither c018 e.c, c018i e.corco018iz_e.c to add any customized
startup code desired.

3. Compile the updated startup file to generate either c018 e.o, c018i e.oor
c018iz e.o.

4. Copy the startup module to c¢: \mcc18\1ib, where C:\mcc18 is the directory
where the compiler is installed.

3.4 COMPILER-MANAGED RESOURCES

Certain special function registers and data sections of the PIC18 PICmicro
microcontrollers are used by MPLAB C18 and are not available for general purpose
user code. Table 3-4 indicates each of these resources, their primary use by the
compiler, and whether the compiler automatically saves the resource when entering an
ISR.

DS51288C-page 46

© 2004 Microchip Technology Inc.

Run-time Model

TABLE 3-4: COMPILER RESERVED RESOURCES

Compiler-managed

Primary Use(s)

Automatically

Resource Saved

PC Execution control v
WREG Intermediate calculations v
STATUS Calculation results v
BSR Bank selection v
PROD Multiplication results, return values,

intermediate calculations
section. tmpdata Intermediate calculations
FSRO Pointers to RAM 4
FSR1 Stack pointer v
FSR2 Frame pointer 4
TBLPTR Accessing values in program memory
TABLAT Accessing values in program memory
PCLATH Function pointer invocation
PCLATU Function pointer invocation

section MATH_DATA

Arguments, return values and temporary
locations for math library functions

Note: = Compiler temporary variables are placed in a udata section named . tmpdata.
Interrupt service routines each create a separate section for temporary data storage
(see Section 2.9.2 “#pragma interruptlow fname / #pragma interrupt

fname”).

© 2004 Microchip Technology Inc.

DS51288C-page 47

MPLAB® C18 C Compiler User’s Guide

NOTES:

DS51288C-page 48 © 2004 Microchip Technology Inc.

MICROCHIP

MPLAB® C18 C COMPILER
USER’S GUIDE

Chapter 4. Optimizations

41

The MPLAB C18 compiler is an optimizing compiler. It performs optimizations that are
primarily intended to reduce code size. All of the optimizations that can be performed
by the MPLAB C18 compiler are enabled by default, but can be completely disabled
using the -0- command-line option. The MPLAB C18 compiler also allows
optimizations to be enabled or disabled on a case-by-case basis. Table 4-1 outlines
each of the optimizations that can be performed by the MPLAB C18 compiler, including

the command-line option to enable or disable it, whether or not it affects debugging,
and the section where it is discussed.

Note: Optimizations will not occur on any function containing inline assembly

code.
TABLE 4-1: MPLAB C18 OPTIMIZATIONS
Optimization To Enable | To Disable AffeCt.s Section
Debugging
Duplicate String Merging -Om+ -Om- 4.1
Branches -Ob+ -0Ob- 4.2
Banking -On+ -On- 4.3
WREG Content Tracking -Ow+ -Ow- 4.4
Code Straightening -Os+ -0Os- 4.5
Tail Merging -Ot+ -0t- v 4.6
Unreachable Code Removal -Ou+ -Ou- v 4.7
Copy Propagation -Op+ -Op- v 4.8
Redundant Store Removal -Or+ -0r- v 4.9
Dead Code Removal -0d+ -0d- 4 4.10
Procedural Abstraction -Opa+ -Opa- 4 4.11
DUPLICATE STRING MERGING -Om+ / -Om-

Duplicate string merging, when enabled, will take two or more identical literal strings
and combine them into a single string table entry with a single instance of the raw data
stored in program memory. For example, given the following, when duplicate string
merging is enabled (-Om+), only a single instance of the data for the string “foo” would
be stored in the output object file, and both a and b would reference this data.

const rom char * a = "foo";
const rom char * b = "foo";

The -om- command-line option disables duplicate string merging.

Duplicate string merging should not affect the ability to debug source code.

DS51288C-page 49

© 2004 Microchip Technology Inc.

MPLAB® C18 C Compiler User’s Guide

4.2 BRANCHES -Ob+ / -Ob-

The following branch optimizations are performed by the MPLAB C18 compiler when
the -0Ob+ command-line option is specified:

1. A branch (conditional or unconditional) to an unconditional branch can be
modified to target the latter's target instead.

2. Anunconditional branch to a RETURN, ADDULNK or SUBULNK instruction can be
replaced by a RETURN, ADDULNK or SUBULNK instruction, respectively.

3. A branch (conditional or unconditional) to the instruction immediately following
the branch can be removed.

4. A conditional branch to a conditional branch can be modified to target the latter's
target if both branches branch on the same condition.

5. A conditional branch immediately followed by an unconditional branch to the
same destination can be removed (i.e., the unconditional branch is sufficient).

The -0Ob- command-line option disables branch optimizations.

Some of the branch optimizations save program space, while others may expose
unreachable code, which can be removed by Unreachable Code Removal (see
Section 4.7 “Unreachable Code Removal”). Branch optimization should not affect
the ability to debug source code.

4.3 BANKING -On+ / -On-

Banking optimization removes MOVLR instruction in instances where it can be
determined that the Bank Select register already contains the correct value. For
example, given the following C source code fragment:

unsigned char a, b;
a = 5;
b = 5;

If compiled with banking optimization disabled (-on-), MPLAB C18 will load the Bank
register prior to each assignment:

0x000000 MOVLB a
0x000002 MOVLW 0x5
0x000004 MOVWF a, 0x1
0x000006 MOVLB b
0x000008 MOVWF b, 0x1

When this same code is compiled with banking optimization enabled (-on+), MPLAB
C18 may be able to eliminate the second MOVLB instruction by determining that the
value of the Bank register will not change:

0x000000 MOVLB a
0x000002 MOVLW 0x5
0x000004 MOVWF a, 0x1
0x000006 MOVWF b, 0x1

The banking optimization should not affect the ability to debug source code.

DS51288C-page 50 © 2004 Microchip Technology Inc.

Optimizations

44 WREG CONTENT TRACKING -Ow+ / -Ow-

WREG content tracking removes MOVLW instructions in instances where it can be
determined that the Working register already contains the correct value. For example,
given the following C source code fragment:

unsigned char a, b;
a =>5;
b = 5;

If compiled with WREG content tracking disabled (-ow-), MPLAB C18 will load a value
of 5 into the Working register prior to each assignment:

0x000000 MOVLW 0x5
0x000002 MOVWF a, 0x1
0x000004 MOVLW 0x5
0x000006 MOVWF b, 0x1

When this same code is compiled with WREG tracking enabled (-0Ow+), MPLAB C18
may be able to eliminate the second MOVLW instruction by determining that the value of
WREG must already be 5 at this point:

0x000000 MOVLW 0x5
0x000002 MOVWF a, 0x1
0x000004 MOVWF b, 0x1

WREG content tracking should not affect the ability to debug source code.

4.5 CODE STRAIGHTENING -Os+ / -Os-

Code straightening attempts to reorder code sequences so that they appear in the
order in which they will be executed. This can move or remove branching instructions
so that code may be smaller and more efficient. An example where this may occur in
Cis:
first:

subl () ;

goto second;
third:

sub3 () ;

goto fourth;
second:

sub2 () ;

goto third;
fourth:

sub4 () ;

In this example, the function calls will occur in numerical order, namely: sub1l, sub2,
sub3 and then sub4. With code straightening disabled (-0s-), the original flow of the
code is mirrored in the generated assembly code:

0x000000 first CALL subl, 0x0

0x000002

0x000004 BRA second
0x000006 third CALL sub3, 0x0
0x000008

0x00000a BRA fourth
0x00000c second CALL sub2, 0x0
0x00000e

0x000010 BRA third
0x000012 fourth CALL sub4, 0x0
0x000014

© 2004 Microchip Technology Inc. DS51288C-page 51

MPLAB® C18 C Compiler User’s Guide

With code straightening enabled (-0s+), the code is reordered sequentially, removing
the branching instructions:

0x000000 first CALL subl, 0x0
0x000002
0x000004 second CALL sub2, 0x0
0x000006
0x000008 third CALL sub3, 0x0
0x00000a
0x00000c fourth CALL sub4, 0x0
0x00000e

Code straightening should not affect the ability to debug source code.

4.6 TAIL MERGING _ot+ / -Ot-

Tail merging attempts to combine multiple sequences of identical instructions into a
single sequence. For example, given the following C source code fragment:

if (user value)
PORTB = 0x55;
else
PORTB = 0x80

When compiled with tail merging disabled (-0t -), a MOVWF PORTB, 0x0 is generated
in both cases of the if statement:

0x000000 MOVF user value, 0x0,0x0
0x000002 BZ Oxa

0x000004 MOVLW 0x55

0x000006 MOVWF PORTB, 0x0
0x000008 BRA 0xe

0x00000a MOVLW 0x80

0x00000c MOVWF PORTB, 0x0
0x00000e RETURN 0xO0

However, when compiled with tail merging enabled (-0t +), only a single
MOVWF PORTB, 0x0 is generated and is used by both the if and else portions of the
code:

0x000000 MOVF user value, 0x0,0x0
0x000002 BZ 0x8

0x000004 MOVLW 0x55

0x000006 BRA Oxa

0x000008 MOVLW 0x80

0x00000a MOVWF PORTB, 0x0
0x00000c RETURN 0x0

When debugging source code compiled with this optimization enabled, the incorrect
source line may be highlighted because two or more source lines may share a single
sequence of assembly code, making it difficult for the debugger to identify which source
line is being executed.

DS51288C-page 52 © 2004 Microchip Technology Inc.

Optimizations

4.7 UNREACHABLE CODE REMOVAL -Ou+ / -Ou-

Unreachable code will attempt to remove any code that can be provably demonstrated
to not execute during normal program flow. An example where this may occur in C is:

if (1)
{
X = 5;
}
else
{
X = 6;

In this code it is obvious that the e1se portion of this code snippet can never be
reached. With unreachable code disabled (-0u-), the generated assembly code will
include the instructions necessary to move 6 to x and the instruction to branch around
these instructions:

0x000000 MOVLB x
0x000002 MOVLW 0x5
0x000004 BRA Oxa
0x000006 MOVLB x
0x000008 MOVLW 0x6
0x00000a MOVWF x,0x1

With unreachable code enabled (-0u+), the generated assembly code will not include
the instructions for the else:

0x000000 MOVLB x
0x000002 MOVLW 0x5
0x000004 MOVWF x,0x1

The unreachable code optimization may affect the ability to set breakpoints on certain
lines of C source code.

4.8 COPY PROPAGATION -Op+ / -Op-

Copy propagation is a transformation that, given an assignment x < y for some
variables x and y, replaces later uses of x with uses of y, as long as intervening
instructions have not changed the value of either x or y. This optimization by itself does
not save any instructions, but enables dead code removal (see Section 4.10 “Dead
Code Removal”). An example where this may occur in C is:

char c;
void foo (char a)

{

char b;
b = a;
c = b;

}

With copy propagation disabled (-0p-), the original code is mirrored in the generated
assembly code:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF b, c
0x000006
0x000008 RETURN 0x0

© 2004 Microchip Technology Inc. DS51288C-page 53

MPLAB® C18 C Compiler User’s Guide

With copy propagation enabled (-0p+), instead of b being moved to ¢ for the second
instruction, a is moved to c:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

Dead code removal would then delete the useless assignment of a to b (see
Section 4.10 “Dead Code Removal”).

Copy propagation may affect the ability to debug source code.

49 REDUNDANT STORE REMOVAL _0r+ / -Or-

When assignment of the form x «— y appears multiple times in an instruction sequence
and the intervening code has not changed the value of x or y, the second assignment
may be removed. This is a special case of common subexpression elimination. An
example where this may occur in C is:

char c¢;
void foo (char a)

{
c = a;
c = ay;
}
With redundant store removal disabled (-0xr-), the original code is mirrored in the
generated assembly code:

0x000000 foo MOVFF a,c
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

With redundant store removal enabled (-or+), the second assignment of c to a is not
required:

0x000000 foo MOVFF a,c
0x000002
0x000004 RETURN 0x0

Redundant store removal may affect the ability to set breakpoints on certain lines of C
source code.

DS51288C-page 54

© 2004 Microchip Technology Inc.

Optimizations

410 DEAD CODE REMOVAL -0d+ / -0d-

Values computed in a function which are not used on any path to the function's exit are
considered dead. Instructions which compute only dead values are themselves
considered dead. Values stored to locations visible outside the scope of the function
are considered used (and therefore not dead) since it is not determinable whether the
value is used or not. Using the same example as that shown in Section 4.8 “Copy
Propagation”:

char c;

void foo (char a)

{

char b;
b = a;
c = b;

}

With copy propagation enabled (-0Op+) and dead code removal disabled (-0d-), the
generated assembly code is that shown in Section 4.8 “Copy Propagation”:

0x000000 foo MOVFF a,b
0x000002
0x000004 MOVFF a,c
0x000006
0x000008 RETURN 0x0

With copy propagation enabled (-0p+) and dead code removal enabled (-0d+),
instead of b being moved to ¢ for the second instruction, a is moved to ¢ thus making
the assignment to b dead and able to be removed:

0x000000 foo MOVFF a,c
0x000002
0x000004 RETURN 0x0

The dead code removal optimization may affect the ability to set breakpoints on certain
lines of C source code.

411 PROCEDURAL ABSTRACTION -Opa+ / -Opa-

MPLAB C18, like most compilers, frequently generates code sequences that appear

multiple times in a single object file. This optimization reduces the size of the generated
code by creating a procedure containing the repeated code and replacing the copies

with a call to the procedure. Procedural abstraction is performed across all functions in
a given code section.

Note: Procedural abstraction generates a savings in program space at the
potential expense of execution time.

For example, given the following C source code fragment:

distance -= time * speed;
position += time * speed;

© 2004 Microchip Technology Inc. DS51288C-page 55

MPLAB® C18 C Compiler User’s Guide

When compiled with procedural abstraction disabled (-0Opa-), the code sequence
generated for t ime * speed is generated for each instruction listed above. It is shown
in bold below.

0x000000 main MOVLB time

0x000002 MOVF time, 0x0, 0x1
0x000004 MULWF speed, 0x1

0x000006 MOVF PRODL, 0x0, 0x0
0x000008 MOVWF PRODL, 0x0

0x00000a CLRF PRODL+1, 0x0

0x00000c MOVF WREG, 0x0, 0x0
0x00000e SUBWF distance, 0x1,0x1
0x000010 MOVF PRODL+1,0x0, 0x0
0x000012 SUBWFB distance+1,0x1,0x1
0x000014 MOVF time, 0x0,0x1
0x000016 MULWF speed, 0x1

0x000018 MOVF PRODL, 0x0,0x0
0x00001a MOVWF PRODL, 0x0

0x00001c CLRF PRODL+1, 0x0

0x00001e MOVF WREG, 0x0, 0x0
0x000020 ADDWF position, 0x1, 0x1
0x000022 MOVF PRODL+1, 0x0,0x0
0x000024 ADDWFC position+1,0x1,0x1
0x000026 RETURN 0x0

Whereas, when compiled with procedural abstraction enabled (- 0pa+), these two code
sequences are abstracted into a procedure and the repeated code is replaced by a call
to the procedure.

0x000000 main MOVLB time

0x000002 CALL pa 0,0x0

0x000004

0x000006 SUBWF distance, 0x1,0x1
0x000008 MOVF PRODL+1,0x0, 0x0
0x00000a SUBWFB distance+1,0x1,0x1
0x00000c CALL _pa_0,0x0

0x00000e

0x000010 ADDWF position, 0x1, 0x1
0x000012 MOVF PRODL+1, 0x0, 0x0
0x000014 ADDWFC position+1,0x1,0x1
0x000016 RETURN 0x0

0x000018 pa O MOVF time, 0x0, 0x1
0x00001a MULWF speed, 0x1

0x00001c MOVF PRODL, 0x0, 0x0
0x00001e MOVWF PRODL, 0x0

0x000020 CLRF PRODL+1, 0x0

0x000022 MOVF WREG, 0x0, 0x0
0x000024 RETURN 0x0

Not all matches are able to be abstracted in a single pass of procedural abstraction.
Procedural abstraction is performed until no more abstractions occur or a maximum of
four passes. The number of passes can be controlled via the -pa=n command-line
option. Procedural abstraction can potentially add an additional 2" - 1 levels of function
calls, where n is the total number of passes. If the hardware stack is a limited resource
in an application, the -pa=n command-line option can be used to adjust the number of
times procedural abstraction is performed.

When debugging source code compiled with this optimization enabled, the incorrect
source line may be highlighted because two or more source lines may share a single
sequence of assembly code, making it difficult for the debugger to identify which source
line is being executed.

DS51288C-page 56

© 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 5. Sample Application

The following sample application will flash LEDs connected to PORTB of a PIC18C452
microcontroller. The command line used to build this application is:

mccl8 -p 18c452 -I c:\mccl8\h leds.c
where c:\mcc18 is the directory in which the compiler is installed. This sample

application was designed for use witha PICDEM™ 2 demo board. This sample covers
the following items:

1. Interrupt handling (#pragma interruptlow, interrupt vectors, interrupt
service routines and context saving)
System header files
Processor-specific header files
. #pragma sectiontype
Inline assembly

o & Wik

© 2004 Microchip Technology Inc. DS51288C-page 57

MPLAB® C18 C Compiler User’s Guide

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

0 J o0 Ul WN

B R R R WWW W W W W W W wNDNDNDNDNDNDNDNNDNNDNNNRE R R R RPRPRPRR R
U d WNhEFEF O WOWIOoOU P WNE O WOWNOU s WNREOWOOWNO U WNNRBE o

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

#include <pl8cxxx.h>
#include <timers.h>

#define NUMBER OF LEDS 8
void timer isr (void);
static unsigned char s _count = 0;

#pragma code low vector=0x18
void low_ interrupt (void)

{

_asm GOTO timer_isr _endasm

}

#pragma code
#pragma interruptlow timer isr save=PROD
void
timer isr (void)
static unsigned char led display = 0;
INTCONbits.TMROIF = 0;
s_count = s_count % (NUMBER_OF LEDS + 1);

led display = (1 << s_count++) - 1;

PORTB = led display;

1

void

main (void)
TRISB = 0;
PORTB = 0;

OpenTimer0 (TIMER INT ON & TO SOURCE INT & TO 16BIT) ;

INTCONbits.GIE = 1;

while (1)
{
}

DS51288C-page 58

© 2004 Microchip Technology Inc.

Sample Application

Line 1:

Line 10:

Line 13:

Line 16:

Line 18:

Line 19-20:

Line 24:

Line 30:

Line 36-37:

Line 39:

Line 40:

This line includes the generic processor header file. The correct processor is
selected via the -p command-line option. (See Section 2.5.1 “System Header
Files” and Section 2.10 “Processor-specific Header Files”)

For PIC18 devices, the low interrupt vector is found at 000000018h. This line of
code changes the default code section to the absolute code section named
low_vector located at address 0x18. (See Section 2.9.1 “#pragma
sectiontype” and Section 2.9.2.3 “Interrupt Vectors”)

This line contains inline assembly that will jump to the ISR. (See Section 2.8.2
“Inline Assembly” and Section 2.9.2.3 “Interrupt Vectors”)

This line returns the compiler to the default code section. (See Section 2.9.1
“#pragma sectiontype” and Table 2-7)

This line specifies the function timer isr as a low-priority interrupt service
routine. This is required in order for the compiler to generate a RETFIE instruc-
tion instead of a RETURN instruction for the timer isr function. In addition, it
ensures that PROD special function register will be saved. (Section 2.9.2

“#$pragma interruptlow fname/ #pragma interrupt fname” and
Section 2.9.2.4 “ISR Context Saving”)

These lines define the timer isr function. Notice that it does not take any
parameters, and does not return anything (as required by ISRs). (See
Section 2.9.2.2 “Interrupt Service Routines”)

This line clears the TMRO interrupt flag to stop the program from processing the
same interrupt multiple times. (See Section 2.10 “Processor-specific Header
Files”)

This line demonstrates how to modify the special function register PORTE in C.

(See Section 2.10 “Processor-specific Header Files”)

These lines initialize the special function registers TRISB and PORTB. (See
Section 2.10 “Processor-specific Header Files”)

This line enables the TMRO interrupt, setting up the timer as an internal 16-bit
clock.

This line enables global interrupts. (See Section 2.10 “Processor-specific
Header Files”)

© 2004 Microchip Technology Inc.

DS51288C-page 59

MPLAB® C18 C Compiler User’s Guide

NOTES:

DS51288C-page 60 © 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Appendix A. COFF File Format

The Microchip COFF specification is based upon the UNIX® System V COFF format
as described in Understanding and Using COFF, Gintaras R. Gircys © 1988, O’Reilly
and Associates, Inc. Special mention is made where the Microchip format differs from
that described there.

A.1 struct filehdr - FILE HEADER

The £ilehdr structure holds information regarding the file. It is the first entry in a
COFF file. It is used to denote where the optional file header, symbol table and section
headers begin.

typedef struct filehdr

{

unsigned short £ magic;
unsigned short f nscns;
unsigned long f timdat;
unsigned long f symptr;
unsigned long f nsyms;
unsigned short £ opthdr;
unsigned short £ flags;
} filehdr t;

A11 unsigned short f magic

The magic number is used to identify the implementation of COFF that the file follows.
For Microchip PICmicro® MCU COFF files, this number is 0x1234.

A.1.2 unsigned short f nscns

The number of sections in the COFF file.

A.1.3 unsigned long f timdat

The time and date stamp when the COFF file was created (this value is a count of the
number of seconds since midnight January 1, 1970).

A14 unsigned long f symptr
A pointer to the symbol table.

A1.5 unsigned long f nsyms

The number of entries in the symbol table.

A.1.6 unsigned short £ opthdr

The size of the optional header record.

© 2004 Microchip Technology Inc. DS51288C-page 61

MPLAB® C18 C Compiler User’s Guide

A7 unsigned short f flags

Information on what is contained in the COFF file. Table A-1 shows the different file
header flags, along with a description and respective values.

TABLE A-1: FILE HEADER FLAGS

Flag Description Value

F _RELFLG Relocation information has been stripped from the 0x0001
COFF file.

F_EXEC The file is executable, and has no unresolved external 0x0002
symbols.

F_LNNO Line number information has been stripped from the 0x0004
COFF file.

L SYMS Local symbols have been stripped from the COFF file. 0x0080

F_EXTENDED18 | The COFF file was produced utilizing the Extended 0x4000
mode.

F_GENERIC The COFF file is processor independent. 0x8000

A.2 struct opthdr - OPTIONAL FILE HEADER

The opthdr structure contains implementation dependent file level information. For
Microchip PICmicro® MCU COFF files, it is used to specify the name of the target pro-
cessor, version of the compiler/assembler and to define relocation types.

Note that the layout of this header is specific to the implementation (i.e., the Microchip
optional header is not the same format as the System V optional header).

typedef struct opthdr

{

unsigned short magic;

unsigned short vstamp;

unsigned long proc_type;

unsigned long rom width bits;

unsigned long ram width bits;
} opthdr t;

A.2.1 unsigned short magic
The magic number can be used to determine the appropriate layout.

A.2.2 unsigned short vstamp

Version stamp.

A.2.3 unsigned long proc_ type

Target processor type. Table A-2 shows the processor type along with the associated
value stored in this field.

DS51288C-page 62 © 2004 Microchip Technology Inc.

COFF File Format

TABLE A-2: PROCESSOR TYPE

Processor Value

P1C18C242 0x8242
PIC18C252 0x8252
PIC18C442 0x8442
PIC18C452(1) 0x8452
PIC18C658 0x8658
PIC18C858 0x8858
PI1C18C601 0x8601
PIC18C801 0x8801
PIC18F242 0x242F
PIC18F252 0x252F
PIC18F442 0x442F
PIC18F452 0x452F
PIC18F248 0x8248
PIC18F258 0x8258
PIC18F448 0x8448
PIC18F458 0x8458
PIC18F1220 0xA122
PIC18F1320 0xA132
PIC18F2220 0xA222
PIC18F2320 0xA232
PIC18F4220 0xA422
PIC18F4320 0xA432
PIC18F6520 0xA652
PIC18F6620 0xA662
PIC18F6720 0xA672
PIC18F8520 0xA852
PIC18F8620 0xA862
PIC18F8720 0xA872
PIC18F6585 0x6585
PIC18F6680 0x6680
PIC18F8585 0x8585
PIC18F8680 0x8680
PIC18F6525 0x6525
PIC18F6621 0xA621
PIC18F8525 0x8525
PIC18F8621 0x8621
PIC18F4331 0x4331
PIC18F4431 0x4431
PIC18F2331 0x2331
PIC18F2431 0x2431
PIC18F2439 0x2439
PIC18F2539 0x2539
PIC18F4439 0x4439
PIC18F4539 0x4539
PIC18F2585 0x2585
PIC18F2680 0x2680
PIC18F2681 0x2681
PIC18F4585 0x4585

© 2004 Microchip Technology Inc. DS51288C-page 63

MPLAB® C18 C Compiler User’s Guide

A.3 struct scnhdr - SECTION HEADER

TABLE A-2: PROCESSOR TYPE (CONTINUED)
PIC18F4680 0x4680
PIC18F4681 0x4681
PIC18F2515 0x2515
PIC18F2525 0x2525
PIC18F2610 0x2610
PIC18F2620 0x2620
PIC18F4515 0x4515
PIC18F4525 0x4525
PIC18F4610 0x4610
PIC18F4620?) 0x4620
PIC18F6410 0x6410
PIC18F6490 0x6490
PIC18F8410 0x8410
PIC18F8490 0x8490

Note 1: This is the processor utilized when compiling for the generic processor when the

compiler is operating in Non-extended mode.

2: This is the processor utilized when compiling for the generic processor when the

compiler is operating in Extended mode.

A.24 unsigned long rom width bits

Width of program memory in bits.

A.25 unsigned long ram width bits

Width of data memory in bits.

The scnhdr structure contains information related to an individual section. The
Microchip PICmicro® MCU COFF files make a slight departure from the normal COFF
definition of the section name. Since the Microchip PICmicro® MCU COFF section
names may be longer than eight characters, the Microchip PICmicro® MCU COFF files

allow a string table entry for long names.

typedef struct scnhdr

{

union

{

char s name [8]

struct

{

unsigned long _s zeroes
unsigned long _s offset

} s s;

}_s;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
} scnhdr t;

long
long
long
long
long
long

s_paddr;
s_vaddr;
s_size;

S_scnptr;
s _relptr;

s_lnnoptr;
short s _nreloc;

short s _nlnno;

long

s flags;

/* section name is a string */

DS51288C-page 64

© 2004 Microchip Technology Inc.

COFF File Format

A.3.1 union _s

A string or a reference into the string table. Strings of fewer than eight characters are
stored directly, and all others are stored in the string table. If the first four characters of
the string are 0, then the last four bytes are assumed to be an offset into the string table.
This is a bit nasty as it is not strictly conforming to the ANSI specification (i.e., type
munging is undefined behavior by the standard), but it is effective and it maintains
binary compatibility with the System V layout, which other options would not do. This
implementation has the advantage of mirroring the standard System V structure used
for long symbol names.

A3.1.1 char s name[8]

In-place section name. If the section name is fewer than eight characters long, then the
section name is stored in place.

A3.1.2 struct s s

Section name is stored in the string table. If the first four characters of the section name
are zero, then the last four form an offset into the string table to find the name of the
section.

A3.1.21 unsigned long _s zeroes

First four characters of the section name are zero.

A3.1.22 wunsigned long s offset
Offset of section name in the string table.

A3.1.3 unsigned long s_paddr

Physical address of the section.

A3.14 unsigned long s_vaddr

Virtual address of the section. Always contains the same value as s_paddr.

A.3.2 unsigned long s size

Size of this section.

A.3.3 unsigned long s_scnptr

Pointer to the raw data in the COFF file for this section.

A.3.4 unsigned long s relptr

Pointer to the relocation information in the COFF file for this section.

A.3.5 unsigned long s lnnoptr

Pointer to the line number information in the COFF file for this section.

A3.6 unsigned short s nreloc

The number of relocation entries for this section.

A.3.7 unsigned short s nlnno

The number of line number entries for this section.

© 2004 Microchip Technology Inc. DS51288C-page 65

MPLAB® C18 C Compiler User’s Guide

A.3.8 unsigned long s flags

Section type and content flags. The flags which define the section type and the section
qualifiers are stored as bitfields in the s_ f1ags field. Masks are defined for the bitfields
to ease access. Table A-3 shows the different section header flags, along with a
description and respective values.

TABLE A-3: SECTION HEADER FLAGS

Flag Description Value
STYP_TEXT Section contains executable code. 0x00020
STYP_DATA Section contains initialized data. 0x00040
STYP_ BSS Section contains uninitialized data. 0x00080
STYP DATA ROM Section contains initialized data for program 0x00100

memory.
STYP_ ABS Section is absolute. 0x01000
STYP SHARED Section is shared across banks. 0x02000
STYP_OVERLAY Section is overlaid with other sections of the 0x04000
same name from different object modules.
STYP_ACCESS Section is available using access bit. 0x08000
STYP_ACTREC Section contains the overlay activation record 0x10000
for a function.

A.4 struct reloc - RELOCATION ENTRY

Any instruction that accesses a relocatable identifier (variable, function, etc.) must have
a relocation entry. This differs from the System V relocation data, where the offset is
stored in the location being relocated to, in that the offset to add to the base address of
the symbol is stored in the relocation entry. This is necessary because Microchip
relocations are not restricted to just filling in an address+offset value into the data
stream, but also do simple code modifications. It is much more straightforward to store
the offset here, at the cost of a slightly increased file size.

typedef struct reloc

{

unsigned long r_vaddr;

unsigned long r symndx;

short r offset;

unsigned short r type;
} reloc t;

A.41 unsigned long r vaddr
Address of reference (byte offset relative to start of raw data).
A.4.2 unsigned long r_ symndx

Index into symbol table.

A.43 short r offset

Signed offset to be added to the address of symbol r symndx.

DS51288C-page 66 © 2004 Microchip Technology Inc.

COFF File Format

Ad.4 unsigned short r type

Relocation type, implementation defined values. Table A-4 lists the relocation types,
along with a description and respective values.

TABLE A-4: RELOCATION TYPES
Type Description Value
RELOCT CALL CALL instruction (first word only on PIC18) 1
RELOCT GOTO GOTO instruction (first word only on PIC18) 2
RELOCT HIGH Second 8 bits of an address 3
RELOCT LOW Low order 8 bits of an address 4
RELOCT P 5 bits of address for the P operand of a PIC17 MOVFP 5
or MOVPF instruction
RELOCT BANKSEL Generate the appropriate instruction to bank switch for 6
a symbol
RELOCT PAGESEL Generate the appropriate instruction to page switch for 7
a symbol
RELOCT ALL 16 bits of an address 8
RELOCT_IBANKSEL Generate indirect bank selecting instructions 9
RELOCT_F 8 bits of address for the F operand of a PIC17 10
MOVFP or MOVPF instruction
RELOCT_TRIS File register address for TRIS instruction 1
RELOCT MOVLR MOVLR bank PIC17 banking instruction 12
RELOCT MOVLB MOVLB PIC17 and PIC18 banking instruction 13
RELOCT GOTO2 Second word of an PIC18 GOTO instruction 14
RELOCT_CALL2 Second word of an PIC18 CALL instruction 14
RELOCT_FF1 Source register of the PIC18 MOVFF instruction 15
RELOCT FF2 Destination register of the PIC18 MOVFF instruction 16
RELOCT SF2 Destination register of the PIC18 MOVSF instruction 16
RELOCT LFSR1 First word of the PIC18 LFSR instruction 17
RELOCT LFSR2 Second word of the PIC18 LFSR instruction 18
RELOCT_BRA PIC18 BRA instruction 19
RELOCT RCALL PIC18 RCALL instruction 19
RELOCT CONDBRA PIC18 relative conditional branch instructions 20
RELOCT UPPER Highest order 8 bits of a 24-bit address 21
RELOCT ACCESS PIC18 access bit 22
RELOCT PAGESEL WREG Selecting the correct page using WREG as scratch 23
RELOCT PAGESEL BITS Selecting the correct page using bit set/clear 24
instructions
RELOCT_SCNSZ_LOW Size of a section 25
RELOCT_SCNSZ_HIGH 26
RELOCT_SCNSZ_UPPER 27
RELOCT_SCNEND_LOW Address of the end of a section 28
RELOCT_SCNEND_HIGH 29
RELOCT SCNEND UPPER 30
RELOCT_ SCNEND_ LFSR1 Address of the end of a section on LFSR 31
RELOCT SCNEND LFSR2 32

© 2004 Microchip Technology Inc. DS51288C-page 67

MPLAB® C18 C Compiler User’s Guide

A5 struct syment - SYMBOL TABLE ENTRY

Symbols are created for all identifiers, as well as sections, function begins, function
ends, block begins and block ends.

#define SYMNMLEN 8
struct syment

{

union

char n name [SYMNMLEN] ;
struct

{

unsigned long n zeroes;
unsigned long n offset;
} nn;
char * n nptr[2];
Y

unsigned long n_value;
short n_scnum;
unsigned short n_ type;
char n_sclass;
char n_numaux;

}

A.5.1 union n

The symbol name may be stored directly as a string, or it may be a reference to the
string table. Symbol names of fewer than eight characters are stored here, with all
others being stored in the string table. It is from this structure that the inspiration comes
for extending the section data structures to allow for section names to be stored in the
symbol table.

A5.1.1 char n name [SYMNMLEN]

In-place symbol name, if fewer than eight characters long.

Ab51.2 struct n n

Symbol name is located in string table. If the first four characters of the symbol name
are zero, then the last four form an offset into the string table to find the name of the
symbol.

A5.1.21 wunsigned long _n_zeros

First four characters of the symbol name are zero.

A5.1.22 wunsigned long n offset
Offset of symbol name in the string table.
Ab5.13 char * n nptr

Allows for overlaying.

A.5.2 unsigned longn value

Value of symbol. Typically, this is the address of the symbol within the section in which
it resides. For link-time constants (e.g., the Microchip symbol _stksize), the value is
a literal value and not an address. To the linker, there is typically no difference. The
distinction is only in the usage in the application code.

DS51288C-page 68

© 2004 Microchip Technology Inc.

COFF File Format

A.5.3 short n_scnum

References the section number where this symbol is located.
A.5.4 unsigned short n_type

Base type and derived type.

A541 SYMBOL TYPES

Table A-5 lists the base types, along with a description and respective values.

TABLE A-5: BASE SYMBOL TYPES

Type Description Value

T NULL null 0

T VOID void 1

T CHAR character 2
T SHORT short integer 3
T INT integer 4
T LONG long integer 5
T FLOAT floating point 6
T DOUBLE double length floating point 7
T STRUCT structure 8
T UNION union 9
T ENUM enumeration 10
T_MOE member of enumeration 1
T UCHAR unsigned character 12
T USHORT unsigned short 13
T UINT unsigned integer 14
T ULONG unsigned long 15

A54.2 DERIVED TYPES

Pointers, arrays, and functions are handled via derived types. Table A-6 lists the

derived types, along with a description and respective values.

TABLE A-6: DERIVED TYPES

Derived Type Description Value
DT NON no derived type 0
DT PTR pointer 1
DT FCN function 2
DT ARY array 3

© 2004 Microchip Technology Inc.

DS51288C-page 69

MPLAB® C18 C Compiler User’s Guide

A.5.5 charn sclass

Storage class of the symbol. Table A-7 lists the storage classes, along with a
description and respective values.

TABLE A-7: STORAGE CLASSES

Storage Class Description Value
C_EFCN Physical end of function OXFF
C NULL Null 0
C_AUTO Automatic variable 1
C_EXT External symbol 2
C_STAT Static 3
C_REG Register variable 4
C_EXTDEF External definition 5
C LABEL Label 6
C ULABEL Undefined label 7
C_MOS Member of structure 8
C ARG Function argument 9
C STRTAG Structure tag 10
C_MOU Member of union 11
C _UNTAG Union tag 12
C _TPDEF Type definition 13
C USTATIC Undefined static 14
C_ENTAG Enumeration tag 14
C_MOE Member of enumeration 16
C REGPARM Register parameter 17
C FIELD Bit field 18
C_AUTOARG Automatic argument 19
C_LASTENT Dummy entry (end of block) 20
C BLOCK “bb” or “eb” 100
C_FCN “bf” or “ef” 101
C_EOS End of structure 102
C FILE File name 103
C_LINE Line number reformatted as symbol table entry 104
C ALIAS Duplicate tag 105
C_HIDDEN External symbol in dmert public library 106
C_EOF End of file 107
C LIST Absolute listing on or off 108
C SECTION Section 109
A.5.6 char n_numaux

The number of auxiliary entries for this symbol.

DS51288C-page 70

© 2004 Microchip Technology Inc.

COFF File Format

A.6 struct coff lineno -LINE NUMBER ENTRY

Any executable source line of code gets a cof £ _1ineno entry in the line number table
associated with its section. For a Microchip PICmicro® MCU COFF file, this means that
every instruction may have a cof £ _1ineno entry since the debug information is often
for debugging through the absolute listing file. Readers of this information should note
that the COFF file is not required to have an entry for every instruction, though it typi-
cally does. This information is significantly different from the System V format.

struct coff lineno

{

unsigned long 1 srcndx;

unsigned short 1 lnno;

unsigned long 1 paddr;

unsigned short 1 flags;

unsigned long 1 fcnndx;
} coff lineno t;

A.6.1 unsigned long 1 srcndx

Symbol table index of associated source file.

A.6.2 unsigned short 1 1lnno

Line number.

A.6.3 unsigned long 1 paddr

Address of code for this line number entry.

A.6.4 unsigned short1l flags

Bit flags for the line number entry. Table A-8 lists the bit flags, along with a description
and respective values.
TABLE A-8: LINE NUMBER ENTRY FLAGS
Flag Description Value
LINENO HASFCN Setif 1 fendx is valid 0x01

A.6.5 unsigned long 1 fcnndx

Symbol table index of associated function (if there is one).

A.7 struct aux file - AUXILIARY SYMBOL TABLE ENTRY FOR A SOURCE FILE

typedef struct aux file

{

unsigned long x offset;
unsigned long x incline;
unsigned char x flags;
char unused[9];

} aux_file t;

A.71 unsigned long x offset

String table offset for filename.

A.7.2 unsigned long x_incline

Line number at which this file was included. If O, file was not included.

© 2004 Microchip Technology Inc. DS51288C-page 71

MPLAB® C18 C Compiler User’s Guide

A.7.3 unsigned char x_flags

Bit flags for the . £ile entry. Table A-9 lists the bit flags, along with a description and

respective values.

TABLE A-9: .file ENTRY FLAGS

Flag

Description

Value

X _FILE DEBUG ONLY This . £ile entry was included for 0x01
debugging purposes only

A.8 struct aux_scn - AUXILIARY SYMBOL TABLE ENTRY FOR A SECTION

typedef struct aux scn

{
unsigned long x_scnlen;
unsigned short x nreloc;
unsigned short x nlinno;
char unused[10];

} aux scn_t;

A.8.1 unsigned long x_scnlen

Section length.

A.8.2 unsigned short x nreloc

Number of relocation entries.

A.8.3 unsigned short x nlinno

Number of line numbers.

A.9 struct aux tag- AUXILIARY SYMBOL TABLE ENTRY FOR A
struct/union/enum TAGNAME

typedef struct aux tag

{
char unused[6];
unsigned short x size;
char _unused2[4];
unsigned long x_endndx;
char unused3([2];

} aux tag t;

A.9.1 unsigned short x_size

Size of structure, union or enumeration.

A.9.2 unsigned long x_endndx

Symbol index of next entry beyond this structure, union or enumerated tag.

DS51288C-page 72

© 2004 Microchip Technology Inc.

COFF File Format

A10 struct aux eos - AUXILIARY SYMBOL TABLE ENTRY FOR AN END OF
struct/union/enum

typedef struct aux eos

{

unsigned long x_tagndx;
char _unused[2];
unsigned short x size;
char unused2([10];

} aux eos t;

A.10.1 unsigned long x_ tagndx

Symbol index of a structure, union or enumerated tag.

A.10.2 wunsigned short x size

Size of a structure, union or enumeration.

A11 struct aux_fcn - AUXILIARY SYMBOL TABLE ENTRY FOR A
FUNCTION NAME

typedef struct aux fcn

{
unsigned long x_ tagndx;
unsigned long x size;
unsigned long x lnnoptr;
unsigned long x_endndx;
short x actscnum;

} aux fen t;

A.11.1 unsigned long x tagndx

The symbol table index of the structure or union tagname associated with the return
value type, if the return value base type is structure or union.

A.11.2 unsigned long x_ lnnoptr

File pointer to line numbers for this function.

A.11.3 unsigned long x endndx

Symbol index of next entry beyond this function.

A.11.4 short x_actscnum

Section number of the static activation record data.

© 2004 Microchip Technology Inc. DS51288C-page 73

MPLAB® C18 C Compiler User’s Guide

A12 struct aux fcn calls - AUXILIARY SYMBOL TABLE ENTRY FOR
FUNCTION CALL REFERENCES

typedef struct aux fcn calls

{

unsigned long x_calleendx;
unsigned long x_is_interrupt;
char unused[10];

} aux_fen calls t;

A121 unsigned long x_calleendx

Symbol index of the called function. If call of a higher order function, set to
AUX _FCN_CALLS HIGHERORDER.

#define AUX FCN_CALLS HIGHERORDER ((unsigned long)-1)

A12.2 unsignedlongx is interrupt

Specifies whether the function is an interrupt, and if so, the priority of the interrupt.
0: not an interrupt
1: low priority
2: high priority

A.13 struct aux_arr - AUXILIARY SYMBOL TABLE ENTRY FOR AN ARRAY

#define X DIMNUM 4
typedef struct aux arr

{

unsigned long x_ tagndx;

unsigned short x 1lnno;

unsigned short x size;

unsigned short x dimen [X DIMNUM] ;
} aux arr t;

A13.1 unsigned long x tagndx

The symbol table index of the structure or union tagname associated with the array
element type, if the base type is structure or union.

A.13.2 unsigned short x size
Size of array.

A.13.3 unsigned short x_dimen [X DIMNUM]

Size of first four dimensions.

DS51288C-page 74 © 2004 Microchip Technology Inc.

COFF File Format

A.14 struct aux eobf - AUXILIARY SYMBOL TABLE ENTRY FOR THE END OF
A BLOCK OR FUNCTION

typedef struct aux eobf

{

char unused[4];
unsigned short x lnno;
char unused2([12];

} aux eobf t;

A.141 unsigned short x 1lnno

C source line number of the end, relative to start of block/function.

A.15 struct aux bobf - AUXILIARY SYMBOL TABLE ENTRY FOR THE
BEGINNING OF A BLOCK OR FUNCTION

typedef struct aux bobf

{

char unused[4];
unsigned short x 1lnno;
char unused2(6];
unsigned long x_endndx;
char unused3[2];

} aux bobf t;

A.151 unsigned short x lnno

C source line number of the beginning, relative to start enclosing scope.

A.15.2 unsigned long x endndx

Symbol index of next entry past this block/function.

A.16 struct aux var - AUXILIARY SYMBOL TABLE ENTRY FOR A VARIABLE
OF TYPE struct/union/enum

typedef struct aux var

{

unsigned long x_tagndx;
char unused[2];
unsigned short x size;
char unused2[10];

} aux _var t;

A.16.1 unsigned longx tagndx

Symbol index of a structure, union or enumerated tag.

A.16.2 unsigned short x size

Size of the structure, union or enumeration.

© 2004 Microchip Technology Inc. DS51288C-page 75

MPLAB® C18 C Compiler User’s Guide

A17 struct aux field - AUXILIARY ENTRY FOR A BITFIELD

typedef struct aux field

{

char unusedl[6];
unsigned short x size;
char unused2([10];

} aux field t;

A.171 unsigned short x size

The size of the bitfield, in bits.

DS51288C-page 76 © 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Appendix B. ANSI Implementation-defined Behavior

B.1 INTRODUCTION

This section discusses MPLAB C18 implementation-defined behavior. The ISO
standard for C requires that vendors document the specifics of
“implementation-defined” features of the language.

Note: The section numbers in parenthesis, e.g., (6.1.2), refer to the ANSI C
standard X3.159-1989.

Implementation-defined behavior for the following sections is covered in section G.3 of
the ANSI C Standard.

B.2 IDENTIFIERS

ANSI C Standard: “The number of significant initial characters (beyond 31) in an
identifier without external linkage (6.1.2).”

“The number of significant initial characters (beyond 6) in an
identifier with external linkage (6.1.2).”

“Whether case distinctions are significant in an identifier with
external linkage (6.1.2).”

Implementation: All MPLAB C18 identifiers have at least 31 significant characters.
Case distinctions are significant in an identifier with external
linkage.

B.3 CHARACTERS

ANSI C Standard: “The value of an integer character constant that contains more
than one character or a wide character constant that contains
more than one multibyte character (6.1.3.4).”

Implementation: The value of the integer character constant is the 8-bit value of
the first character. Wide characters are not supported.

ANSI C Standard: “Whether a ‘plain’ char has the same range of values as signed
char orunsigned char (6.2.1.1).

Implementation: A plain char has the same range of values as a signed char.
For MPLAB C18, this may be changed to unsigned char viaa
command line switch (-k).

© 2004 Microchip Technology Inc. DS51288C-page 77

MPLAB® C18 C Compiler User’s Guide

B.4 INTEGERS

ANSI C Standard:

Implementation:

ANSI C Standard:

Implementation:

ANSI C Standard:

Implementation:

ANSI C Standard:

Implementation:

ANSI C Standard:

Implementation:

B.5 FLOATING-POINT

ANSI C Standard:

Implementation:

“A char, a short int or an int bit-field, or their signed or
unsigned varieties, or an enumeration type, may be used in an
expression wherever an int orunsigned int may be used. If
an int can represent all values of the original type, the value is
converted to an int; otherwise, it is converted to an unsigned
int. These are called the integral promotions. All other arithmetic
types are unchanged by the integral promotions.

“The integral promotions preserve value including sign. (6.2.1.1).”

MPLAB C18 does not enforce this by default. The -0i option can
be used to require the compiler to enforce the ANSI defined
behavior. See Section 2.7.1 “Integer Promotions”.

“The result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer of
equal length, if the value cannot be represented (6.2.1.2).”

When converting from a larger integer type to a smaller integer
type, the high order bits of the value are discarded and the
remaining bits are interpreted according to the type of the smaller
integer type. When converting from an unsigned integer to a
signed integer of equal size, the bits of the unsigned integer are
simply reinterpreted according to the rules for a signed integer of
that size.

“The results of bitwise operations on signed integers (6.3).”

The bitwise operators are applied to the signed integer as if it
were an unsigned integer of the same type (i.e., the sign bit is
treated as any other bit).

“The sign of the remainder on integer division (6.3.5).”
The remainder has the same sign as the quotient.

“The result of a right shift of a negative-valued signed integral
type (6.3.7).”

The value is shifted as if it were an unsigned integral type of the
same size (i.e., the sign bit is not propagated).

“The representations and sets of values of the various types of
floating-point numbers (6.1.2.5).”

“The direction of truncation when an integral number is converted
to a floating-point number that cannot exactly represent the
original value (6.2.1.3).”

“The direction of truncation or rounding when a floating-point
number is converted to a narrower floating-point number
(6.2.1.4).”

See Section 2.1.2 “Floating-point Types”.
The rounding to the nearest method is used.

DS51288C-page 78

© 2004 Microchip Technology Inc.

ANSI Implementation-defined Behavior

B.6 ARRAYS AND POINTERS

ANSI C Standard: “The type of integer required to hold the maximum size of an
array — that is, the type of the sizeof operator, size t
(6.3.3.4,7.1.1).7

Implementation: size tisdefined as an unsigned short long int.

ANSI C Standard: “The result of casting a pointer to an integer or vice versa (6.3.4).”

Implementation: The integer will contain the binary value used to represent the
pointer. If the pointer is larger than the integer, the representation
will be truncated to fit in the integer.

ANSI C Standard: “The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff t (6.3.6,
7.1.1)”

Implementation: ptrdiff tisdefined as an unsigned long short.

B.7 REGISTERS

ANSI C Standard: “The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (6.5.1).”

Implementation: The register storage-class specifier is ignored.

B.8 STRUCTURES AND UNIONS

ANSI C Standard: “A member of a union object is accessed using a member of a
different type (6.3.2.3).”

Implementation: The value of the member is the bits residing at the location for the
member interpreted as the type of the member being accessed.

ANSI C Standard: “The padding and alignment of members of structures (6.5.2.1).”

Implementation: Members of structures and unions are aligned on byte
boundaries.

B.9 BIT-FIELDS

ANSI C Standard: “Whether a ‘plain’ int bit-field is treated as a signed int oras
an unsigned int bit-field (6.5.2.1).”

Implementation: A “plain” int bit-field is treated as a signed int bit-field.

ANSI C Standard: “The order of allocation of bit-fields within a unit (6.5.2.1).”

Implementation: Bit-fields are allocated from least significant bit to most significant
bit in order of occurrence.

ANSI C Standard: “Whether a bit-field can straddle a storage-unit boundary
(3.5.2.1)

Implementation: A bit-field cannot straddle a storage unit boundary.

© 2004 Microchip Technology Inc. DS51288C-page 79

MPLAB® C18 C Compiler User’s Guide

B.10 ENUMERATIONS
ANSI C Standard:

Implementation:

B.11 SWITCH STATEMENT
ANSI C Standard:

Implementation:

“The integer type chosen to represent the values of an
enumeration type (6.5.2.2).”

The smallest type capable of representing all values in the
enumeration type.

“The maximum number of case values in a switch statement
(6.6.4.2).”

The maximum number of values is limited only by target memory.

B.12 PREPROCESSING DIRECTIVES

ANSI C Standard:
Implementation:

ANSI C Standard:
Implementation:

ANSI C Standard:
Implementation:

“The method for locating includable source files (6.8.2).”
See Section 2.5.1 “System Header Files”.

“The support for quoted names for includable source files (6.8.2).”
See Section 2.5.2 “User Header Files”.

“The behavior on each recognized #pragma directive (6.8.6).”
See Section 2.9 “Pragmas”.

DS51288C-page 80

© 2004 Microchip Technology Inc.

MICROCHIP

MPLAB® C18 C COMPILER
USER’S GUIDE

Appendix C. Command-line Summary

Usage: mcc18

[options] file [options]

TABLE C-1: COMMAND-LINE SUMMARY
Option Description Reference
-?, --help Displays the help screen 1.2
-I=<path> Add ‘path’ to include path 251,252
-fo=<name> Object file name 1.21
-fe=<name> Error file name 1.21
-k Set plain char type to unsigned char 2.1
-1s Large stack (can span multiple banks) 3.2.2
-ms Set compiler memory model to small model 2.6, 3.1
(default)
-ml Set compiler memory model to large model 2.6,3.1
-0, -0+ Enable all optimizations (default) 4
-0- Disable all optimizations 4
-0d+ Enable dead code removal (default) 410
-0d- Disable dead code removal 4.10
-0i+ Enable integer promotion 271
-0i- Disable integer promotion (default) 2.71
-Om+ Enable duplicate string merging (default) 4.1
-Om- Disable duplicate string merging 4.1
-On+ Enable banking optimizer (default) 4.3
-On- Disable banking optimizer 4.3
-Op+ Enable copy propagation (default) 4.8,4.10
-Op- Disable copy propagation 4.8,4.10
-0r+ Enable redundant store elimination (default) 4.9
-Or- Disable redundant store elimination 4.9
-Oou+ Enable unreachable code removal (default) 4.7
-Ou- Disable unreachable code removal 4.7
-0s+ Enable code straightening (default) 4.5
-Os- Disable code straightening 4.5
-Ot+ Enable tail merging (default) 4.6
-0t- Disable tail merging 4.6
-Ob+ Enable branch optimizations (default) 4.2
-Ob- Disable branch optimizations 4.2
-sca Enable default auto locals (default). Valid for 2.3
Non-extended mode only.
-scs Enable default static locals. Valid for 2.3
Non-extended mode only.
-sco Enable default overlay locals (statically allocate |2.3
activation records). Valid for Non-extended mode
only.

DS51288C-page 81

© 2004 Microchip Technology Inc.

MPLAB® C18 C Compiler User’s Guide

TABLE C-1: COMMAND-LINE SUMMARY (CONTINUED)
Option Description Reference

-Oa+ Enable default data in access memory. Valid for |2.9.1.3
Non-extended mode only.

-Oa- Disable default data in access memory (default). [2.9.1.3
Valid for Non-extended mode only.

-Ow+ Enable WREG tracking (default) 4.4

-Ow- Disable WREG tracking 44

-Opa+ Enable procedural abstraction (default) 4.1

-Opa- Disable procedural abstraction 4.1

-pa=<repeat count> |Set procedural abstraction repeat count 4.1
(default = 4)

-p=<processor> Set processor (default is generic) 1.2.4, 2.6,

2.10

-D<macro> [=text] Define a macro 1.2.3

-w={1]2]|3} Set warning level (default = 2) 1.2.2

-nw=<n> Suppress message <n> 1.2.2

-verbose Operate verbosely (show banner and other 1.2
information)

--extended Generate Extended mode code. 1.2.5

--no-extended Generate Non-extended mode code. 1.2.5

--help-message-1list |Display a list of all diagnostic messages 1.2.2

--help-message-all |Display help for all diagnostic messages 1.2.2

--help-message=<n> |Display help on diagnostic number <n> 1.2.2

DS51288C-page 82

© 2004 Microchip Technology Inc.

MICROCHIP

MPLAB® C18 C COMPILER
USER’S GUIDE

Appendix D. MPLAB C18 Diagnostics

This appendix list errors, warnings and messages generated by the MPLAB C18

compiler.

D.1 ERRORS

1002:

1013:

1014:

1016:

1017:

1018:

1019:

1020:

syntax error, ‘%s’ expected

The syntax of the pre-processor construct was expecting the specified
token. Common causes include typographical errors, missing required
operands to the directive, and mis-matched parenthesis.

error in pragma directive

MPLAB C18 was expecting the pragma being parsed to be complete, but
did not see a new line. This would be caused by extra text following the
pragma.

attribute mismatch in resumption of section ‘%s’

MPLAB C18 requires that a previously declared section’s attribute must
match those which are being specified in the current #pragma
sectiontype directive. This error can also occur when the current
#pragma sectiontype directive specifies overlay or access multiple
times.

integer constant expected for #line directive

The line number operand of the #line preprocessor directive must be an
integer constant.

symbol name expected in ‘interrupt’ pragma

The ‘save=’ clause expects a comma-delimited list of statically allocated
in-scope symbol names which are to be saved and restored by the interrupt
function being specified. Common causes include specifying a symbol
which is not currently in scope, not including a header file which declares
the symbol being referenced, and typographical errors in the symbol name.
function name expected in ‘interrupt’ pragma

The name of a function to be declared as an interrupt is expected as the first
parameter to the ‘interrupt’ pragma. The function symbol must be currently
in scope and must take no parameters and return no value. Common

causes include a missing prototype for the function being declared as an
interrupt and typographical errors.

‘%s’ is a compiler managed resource - it should not appear in a save= list

The symbol named is not valid in a save= clause of an interrupt declaration.
There are some locations which if saved/restored via a save= will produce
aberrant code. These locations do not need additional context save and can
be safely removed from the save= clause to correct the error.

unexpected input following ‘%s’
Extra information exists on the given preprocessor construct.

© 2004 Microchip Technology Inc.

DS51288C-page 83

MPLAB® C18 C Compiler User’s Guide

1050:

1052:

1053:

1054

1099:

1100:

1101:

1102:

11083:

1104:

11085:

1106:

1107:

1108:

section address permitted only at definition

The absolute address in the location clause of the #pragma
sectiontype directive may only be specified in the first pragma defining
this section.

section overlay attribute does not match definition

MPLAB C18 requires that a previously declared section’s attribute must
match those which are being specified in the current #pragma
sectiontype directive.

section share attribute does not match definition

MPLAB C18 requires that a previously declared section’s attribute must
match those which are being specified in the current #pragma
sectiontype directive.

section type does not match definition

MPLAB C18 has previously seen this section name, but it was of a different
type (i.e., code, idata, udata, romdata).

%s

source code ‘#error’ directive message
syntax error

Invalid function type definition.

Ivalue required

An expression which designates an object is required. Common causes
include missing parentheses and a missing ' operator.

cannot assign to ‘const’ modified object

An object qualified with ‘const’ is declared to be read-only data and
modifications to it are therefore not allowed.

unknown escape sequence ‘%s’

The specified escape sequence is not known to the compiler. Check the
User’s Guide for a list of valid character escape sequences.

division by zero in constant expression

The compiler cannot process a constant expression that contains a divide
by (or modulus by) zero.

symbol ‘%s’ has not been defined

A symbol has been referenced before it has been defined. Common causes
include a misspelled symbol name, a missing header file that declares the
symbol, and a reference to a symbol valid only in an inner scope.

‘%s’ is not a function

A symbol must be a function name in order to be declared as an interrupt
function.

interrupt functions must not take parameters

When the processor vectors to an interrupt routine, no parameters are
passed, so a function declared as an interrupt function should not expect
parameters.

interrupt functions must not return a value

Since interrupts are invoked asynchronously by the processor, there will not
be a calling routine to which a value can be returned.

DS51288C-page 84

© 2004 Microchip Technology Inc.

MPLAB® C18 Diagnostics

1109:

1110:

1111:

1112:

1113:

1114:

1115:

1116:

1117:

1118:

1119:

1120:

1121:

1122:

1123:

1124:

type mismatch in redeclaration of ‘%s’

The type of the symbol declared is not compatible with the type of a
previous declaration of the same symbol. Common causes include missing
qualifiers or misplaced qualifiers.

‘auto’ symbol ‘%s’ not in function scope
Variables may only be allocated off the stack within the scope of a function.
undefined label ‘%s’ in ‘%s’

The label has been referenced via a ‘goto’ statement, but has not been
defined in the function. Common causes include a misspelled label identifier
and a reference to an out of scope label, (i.e., a label defined in another
function).

integer type expected in switch control expression

The control expression for a switch statement must be an integer type.
Common causes include a missing “*’ operator and a missing ‘[I’ operator.

integer constant expected for case label value
The value for a case label must be an integer constant.
case label outside switch statement detected

A ‘case’ label is only valid inside the body of a switch statement. Common
causes include a misplaced }.

multiple default labels in switch statement

A switch statement can only have a single ‘default’ label. Common causes
include a missing ‘} to close an inner switch.

type mismatch in return statement

The type of the return value is not compatible with the declared return type
of the function. Common causes include a missing *’ or ‘[]’ operator.

scalar type expected in ‘if’ statement

An ‘if’ statement control expression must be of scalar type, (i.e., an integer
or a pointer).

scalar type expected in ‘while’ statement

A ‘while’ statement control expression must be of scalar type, (i.e., an inte-
ger or a pointer).

scalar type expected in ‘do..while’ statement

A ‘do..while’ statement control expression must be of scalar type, (i.e., an
integer or a pointer).

scalar type expected in ‘for’ statement

A ‘for’ statement control expression must be of scalar type, (i.e., an integer
or a pointer).

scalar type expected in ‘?:" expression

A ?:” operator control expression must be of scalar type, (i.e., an integer or
a pointer).

scalar operand expected for ‘I’ operator

The ‘I’ operator requires that its operand be of scalar type.
scalar operands expected for ‘|| operator

The logical OR operator, ‘||, requires scalar operands.
scalar operands expected for ‘&&’ operator

The logical AND operator, ‘&&’, requires scalar operands.

© 2004 Microchip Technology Inc.

DS51288C-page 85

MPLAB® C18 C Compiler User’s Guide

1125; ‘break’ must appear in a loop or switch statement

A ‘break’ statement must be inside a ‘while’, ‘do’, ‘for’ or ‘switch’ statement.
Common causes include a misplaced .

1126: ‘continue’ must appear in a loop statement
A ‘continue’ statement must be inside a ‘while’, ‘do’, ‘for’ or ‘switch’
statement.

1127: operand type mismatch in ‘?:" operator

The types of the result operands of the “?:’ operator must be either both
scalar types or compatible types.

1128: compatible scalar operands required for comparison
A comparison operator must have operands of compatible scalar types.
1129: [1 operator requires a pointer and an integer as operands

The array access operator, ‘[]', requires that one operand be a pointer and
the other be an integer, that is, for ‘x[y] the expression *“(x+y) must be valid.
‘X[y]" is functionally equivalent to *(x+y)’.

1130: pointer operand required for **’ operator

The *’ dereference operator requires a pointer to a non-void object as its
operand.

1131: type mismatch in assignment

The assignment operators require that the result of the right hand
expression be of compatible type with the type of the result of the left hand
expression. Common causes include a missing *’ or ‘[]' operator.

1132: integer type expected for right hand operand of ‘-=" operator

The ‘-=" operator requires that the right hand side by of integer type when
the left hand side is of pointer type. Common causes include a missing *’
or []’ operator.

1133: type mismatch in ‘-=" operator
The types of the operands of the ‘-=" operator must be such that for ‘x-=y’
the expression ‘x=x-y’ is valid.

1134 arithmetic operands required for multiplication operator

The * and "=’ multiplication operators require that their operands be of
arithmetic type. Common causes include a missing *’ dereference operator
or a missing ‘[]’ index operator.

1134 arithmetic operands required for division operator

The ‘/’ and /=’ division operators require that their operands be of arithmetic
type. Common causes include a missing *’ dereference operator or a
missing ‘[]’ index operator.

1135: integer operands required for modulus operator

The ‘%’ and ‘%=’ division operators require that their operands be of integer
type. Common causes include a missing *’ dereference operator or a
missing ‘[]’ index operator.

1136: integer operands required for shift operator

The bitwise shift operators require that their operands be of integer type.
Common causes include a missing *’ dereference operator or a missing ‘[]
index operator.

DS51288C-page 86 © 2004 Microchip Technology Inc.

MPLAB® C18 Diagnostics

1137:

1138:

1139:

1140:

1141:

1142:

1143:

1144:

1145:

1146:

1147:

1148:

1149:

1150:

integer types required for bitwise AND operator

The ‘&’ and ‘&=’ operators require that both operands be of integer type.
Common causes include a missing ™ or ‘[]’ operator.

integer types required for bitwise OR operator

The ‘" and ‘|=’ operators require that both operands be of integer type.
Common causes include a missing ' or ‘[]" operator.

integer types required for bitwise XOR operator

The ‘¥ and ‘A=’ operators require that both operands be of integer type.
Common causes include a missing ' or ‘[]" operator.

integer type required for bitwise NOT operator

The ‘~’" operator requires that the operand be of integer type. Common
causes include a missing ' or ‘[]" operator.

integer type expected for pointer addition

The addition operator requires that when one operand is of pointer type, the
other must be of integer type. Common causes include a missing * or ‘[]
operator.

type mismatch in ‘+’ operator

The types of the operands of the ‘+’ operator must be such that one operand
is of pointer type and the other is of integer type or both operands are of
arithmetic type.

pointer difference requires pointers to compatible types

When calculating the difference between two pointers, the pointers must
point to objects of compatible type. Common causes include missing
parentheses and a missing ‘[]' operator.

integer type required for pointer subtraction

When the left hand operand of the subtraction operator is of pointer type,
the right hand operand must be of integer type. Common causes include a
missing “*’ or ‘[]’ operator.

arithmetic type expected for subtraction operator

When the left hand operand is not of pointer type, the subtraction operator
requires that both operands by of arithmetic type.

type mismatch in argument %d

The type of an argument to a function call must be compatible with the
declared type of the corresponding parameter.

scalar type expected for increment operator

The increment operators require that the operand be a modifiable Ivalue of
scalar type.

scalar type expected for decrement operator

The decrement operators require that the operand be a modifiable Ivalue of
scalar type.

arithmetic type expected for unary plus

The unary plus operator requires that its operand be of arithmetic type.
arithmetic type expected for unary minus

The unary minus operator requires that its operand be of arithmetic type.

© 2004 Microchip Technology Inc.

DS51288C-page 87

MPLAB® C18 C Compiler User’s Guide

1151:

1152:

1153:

1154:

1160:

1161:

1162:

1163:

1165:

1166:

1167:

1168:

1169:

1170:

1171:

struct or union object designator expected

The member access operators, ‘. and ‘->’ require operands of struct/union
and pointer to struct/union, respectively.

scalar or void type expected for cast

An explicit cast requires that the type of the operand be of scalar type and
the type being cast to be scalar type or void type.

cannot assign array type objects

An object of array type may not be directly assigned. Assignment is allowed
only to array elements.

parameter %d in ‘%s’ must have a name

Parameters in a function definition must have an identifier declarator to
name them. The naming declarator is not required in prototypes, but is in a
definition.

conflicting storage classes specified
A declaration may only specify a single storage class.
conflicting base types specified

A declaration may only specify a single base type (void, int, float, et.al.).
Multiple instances of the same base type is also an error (e.g.,int int x;)

both ‘signed’ and ‘unsigned’ specified
A type may include only one of ‘signed’ and ‘unsigned.’
function must be located in program memory

All functions must be located in program memory, as data memory is not
executable.

reference to incomplete tag ‘%s’

A forward reference struct or union tag cannot be referenced directly in a
declaration. Only pointers to a forward referenced tag may be declared.

invalid type specification

The type specification is not valid. Common causes include typographic
errors or misuse of a typedef type. (e.g., “int enum myEnum xyz;” has an
invalid type specification.)

redefinition of enum tag ‘%s’

An enumeration tag may only be defined once. Common causes include
multiple inclusions of a header file which defines the enumeration tag.

reference to undefined enumeration tag ‘%s’

An enumeration tag must be defined prior to any declarations which
reference it. Unlike structure and union tags, forward references to
enumeration tags are not allowed.

anonymous members allowed in unions only

An anonymous structure member may be declared only as a member of a
union.

non-integral type bitfield detected
The type of a bitfield member of a structure must be an integral type.
bitfield width greater than 8 detected

A bitfield must fit within a single storage unit, which for MPLAB C18 is a
byte. Thus, a bitfield must contain 8 or fewer bits.

DS51288C-page 88

© 2004 Microchip Technology Inc.

MPLAB® C18 Diagnostics

1172:

1173:

1174:

1175:

1176:

1200:

1201:

1202:

1203:

1204:

1205:

1206:

1207:

enumeration value of ‘%s’ does not match previous

When the same enumeration constant name is used in multiple
enumeration tags, the value of the enumeration constant must be the same
in each enumeration.

cannot locate a parameter in program memory, ‘%s’

Since all parameters are located on the stack, it is not possible to locate a
parameter in program memory. Common causes include a mis-typed
pointer to program memory declaration.

local “%s’ in program memory can not be ‘auto’

A local variable which is located in program memory must be declared as
static or extern, as ‘auto’ local variables must be located on the stack.

static parameter detected in function pointer ‘%s’

Function pointers require parameters be passed via the stack. When
compiling with static locals enabled, declare parameters for function
pointers and for functions whose addresses are assigned to function
pointers explicitly to ‘auto’.

the sign was already specified

A type may include only one ‘signed’ or ‘unsigned’.

cannot reference the address of a bitfield

The address of a bitfield member of a structure cannot be referenced
directly.

cannot dereference a pointer to ‘void’ type

The ' dereference operator requires a pointer to a non-void object as its
operand.

call of non-function

The operand of the ()’ function call post-fix operator must be of type ‘pointer
to function.” Most commonly, this is a function identifier. Common causes
include missing scope parentheses.

too few arguments in function call

To call a function, the number of arguments passed must match exactly the
number of parameters declared for the function.

too many arguments in function call

To call a function, the number of arguments passed must match exactly the
number of parameters declared for the function.

unknown member ‘%s’ in ‘%s’

The structure or union tag does not have a member of the name requested.
Common causes include a misspelled member name and a missing
member access operator for a nested structure.

unknown member ‘%s’

The structure or union type does not have a member of the name
requested. Common causes include a misspelled member name and a
missing member access operator for a nested structure.

tag ‘%s’ is incomplete
An incomplete struct or union tag cannot be referenced by the member

access operators. Common causes include a misspelled structure tag
name in the symbol definition.

© 2004 Microchip Technology Inc.

DS51288C-page 89

MPLAB® C18 C Compiler User’s Guide

1208: “#pragma interrupt” detected inside function body
The ‘interrupt’ pragma is only available at file level scope.
1209: unknown function ‘%s’ in #pragma interrupt

The ‘interrupt’ pragma requires that the function being declared as an
interrupt have an active prototype when the pragma is encountered.

1210: unknown symbol ‘%s’ in interrupt save list

The ‘interrupt’ pragma requires that symbols listed in the ‘save’ list must be
declared and in scope.

1211: missing definition for interrupt function ‘%s’

The function was declared as an interrupt, but was never defined. The
function definition of an interrupt function must be in the same module as
the pragma declaring the function as an interrupt.

1212: static function ‘%s’ referenced but not defined

The function has been declared as static and has been referenced
elsewhere in the module, but there is no definition for the function present.
Common causes include a misspelled function name in the function
definition.

1213: initializer list expected

The symbol being initialized requires a brace-enclosed initializer list, but a
single value initializer was found.

1214: constant expression expected in initializer

The initializer value for a statically allocated symbol must be a constant
expression.

1215: initialization of bitfield members is not currently supported
Bitfield structure members cannot currently be initialized explicitly.
1216: string initializer used for non-character array object

A string literal initializer is only valid for initializing objects of type ‘array of
char’ or type ‘pointer to char’ (either can be unsigned char as well).

1218: extraneous initializer values

The count of initializer values does not agree with the number of expected
values based on the type of the object being initialized. There are too many
values in the initializer list.

1219: integer constant expected

A constant expression of integral type was expected, but an expression of
non-integral type or a non-constant expression was found.

1220: initializer detected in typedef declaration of ‘%s’
A typedef declaration cannot include initializers
1221: empty initializer list detected

An initializer list cannot be empty. There must be one or more initializer
values between the braces.

1250: ‘%s’ operand %s must be a literal

The specified operand for the opcode must be a literal value, not a symbol
reference.

DS51288C-page 90 © 2004 Microchip Technology Inc.

MPLAB® C18 Diagnostics

1251:

1252:

1253:

1300:

1301:

1302:

1303:

1304:

1500:

1501:

‘%s’ operand count mismatch

The number of operands found for the specified opcode does not match the
number of operands expected. Unlike the MPASM assembler, the MPLAB
C1x in-line assembler expects all operands to be explicitly specified. There
are no default values for operands such as the access bit or destination bit.

invalid opcode ‘%s’ detected for processor ‘%s’

The opcode specified is not valid for the target processor. Common causes
include porting in-line assembly code from a processor with a different
instruction set (e.g., PIC17CXX to PIC18CXX) and typographical errors in
the spelling of the opcode.

constant operand expected

Operands to in-line assembly opcodes must resolve to a constant
expression, where a constant expression is defined as a literal constant or
a statically allocated symbol reference optionally plus or minus an integer
constant. Common causes include the use of a dynamically allocated
symbol (‘auto’ local variables and parameters) as the operand to an in-line
assembly opcode.

stack frame too large

The size of the stack frame has exceeded the maximum addressable size.
Commonly caused by too many local variables allocated as ‘auto’ storage
class in a single function.

parameter frame too large

The size of the parameter frame has exceeded the maximum addressable
size. Commonly caused by too many parameters being passed to a single
function.

old style function declarations not supported

MPLAB C18 does not currently support the old K&R style function
definitions. The in-line parameter type declarations recommended by the
ANSI standard should be used instead.

‘near’ symbol defined in non-access qualified section

Statically allocated variables allocated into a non-access qualified section
cannot be accessed via the access bit, and therefore defining them with the
‘near’ range qualifier would result in incorrect access to the location.

illegal use of obsolete ‘overlay’ storage class for symbol ‘%s’

The overlay storage class is not supported in Extended mode. Also note
that in Non-extended mode, the overlay storage class is valid only for local
variables.

unable to open file ‘%s’

The compiler was unable to open the named file. Common causes include
misspelled filename and insufficient access rights

unable to locate file ‘%s’

The compiler was unable to locate the named file. Common causes include
misspelled filename and misconfigured include path.

© 2004 Microchip Technology Inc.

DS51288C-page 91

MPLAB® C18 C Compiler User’s Guide

1502: unknown option ‘%s’
The specified command-line option is not a valid MPLAB C1X option.
1503: multi-bank stack supported only on 18CXX core

The software stack can cross bank boundaries only on the 18CXX
processors.

1504: redefinition of ‘%s’

The same function name may not have multiple definitions.
1505: redeclaration of ‘%s’

The same variable name may not have multiple defining declarations.
1506: function ‘%s’ cannot have ‘overlay’ storage class specifier

The ‘overlay’ storage class specifier may not be used with functions.
1507: variable ‘%s’ of ‘overlay’ storage class cannot have ‘near’ qualifier

The compiler does not currently support variables of ‘overlay’ storage class
in access ram.

1508: inconsistent linkage for %s

The identifier has been given both internal and external linkage.
1509: %s cannot have ‘extern’ storage class

The ‘extern’ storage class specifier may not be used with parameters.
1510: %s cannot have ‘extern’ storage class, block scope, and an initializer

The compiler does not support explicit initialization of block scope objects
with ‘extern’ storage class.

1511: ran out of internal memory for temps

The compiler cannot support the allocation of any more temporary
variables.

1512: redefinition of label ‘%s’

The same label may not have multiple definitions in the same function.
1513: redefinition of member ‘%s’

A structure or union may only have a single member with a given name.
1514: cast of a pointer to floating point is undefined

The requested cast is illegal. This error may be caused by omitting an array
subscript on assignment.

1515: redefinition of case value %ld

A switch statement may only have a single case statement for a given value.
1516: array size must be greater than zero

The constant value given for the array size must be greater than zero.
1900: %s processor core not supported

The compiler does not currently support the specified processor core.
Commonly caused by a misspecification of processor name or an
invocation of the incorrect compiler executable.

DS51288C-page 92 © 2004 Microchip Technology Inc.

MPLAB® C18 Diagnostics

D.2 WARNINGS
2001:

2002:

2025:

2026:

2027:

2028:

2029:

2052:

2053:

2054:

2055:

2056:

2057:

2058:

non-near symbol ‘%s’ declared in access section ‘%s’

Statically allocated variables declared into an access qualified section will
always be placed by the linker into access data memory, and can therefore
always be qualified with the ‘near’ range qualifier. Not specifying the ‘near’
range qualifier will not cause incorrect code, but may result in extraneous
bank select instructions.

unknown pragma ‘%s’

The compiler has encountered a pragma directive which is not recognized.
As per ANSI/ISO requirements, the pragma is ignored. Common causes
include misspelled pragma names.

default overlay locals is unsupported in Extended mode, -sco ignored
The overlay storage class is not supported in Extended mode.

default static locals is unsupported in Extended mode, -scs ignored
The default storage class of static is not supported in Extended mode.
default auto locals is redundant in Extended mode, -sca ignored

The default storage class for locals is always auto in Extended mode.
default static locals is unsupported in Extended mode, -Ol ignored
The default storage class of static is not supported in Extended mode.
default access RAM is unsupported in Extended mode, -Oa ignored
The default storage range of near is not supported in Extended mode.
unexpected return value

A return of a value statement has been detected in a function declared to
return no value. The return value will be ignored.

return value expected

A return with no value has been detected in a function declared to return a
value. The return value will be undefined.

suspicious pointer conversion

A pointer has been used as an integer or an integer has been used as a
pointer without an explicit cast.

expression is always false

The control expression of a conditional statement evaluates to a constant
false value.

expression is always true

The control expression of a conditional statement evaluates to a constant
true value.

possibly incorrect test of assignment

An implicit test of an assignment expression, (e.g., ‘if(x=y)’ is often seen
when an ‘=" operator has been used when a ‘==" operator was intended).

call of function without prototype

A function call has been made without an in-scope function prototype for
the function being called. This can be unsafe, as no type-checking for the
function arguments can be performed.

© 2004 Microchip Technology Inc.

DS51288C-page 93

MPLAB® C18 C Compiler User’s Guide

2059:

2060:

2061:

2062:

2063:

2064:

2065:

2066:

2067:

2068:

2069:

2070:

2071:

unary minus of unsigned value

The unary minus operator is normally only applied to signed values.
shift expression has no effect

Shifting by zero will not change the value being shifted.

shift expression always zero

The number of bits that the value is being shifted by is greater than the
number of bits in the value being shifted. The result will always be zero.

‘>’ operator expected, not ‘.’

A struct/union member access via a pointer to struct/union has been
performed using the ‘. operator.

‘.’ operator expected, not ‘->’

A direct struct/union member access has been performed using the *->’
operator.

static function ‘%s’ not defined

The function has been declared as static, but there is no definition for the
function present. Common causes include a misspelled function name in
the function definition.

static function ‘%s’ never referenced
The static function has been defined, but has not been referenced.
type qualifier mismatch in assignment

Pointer assignment where the source and destination pointers point to
objects of compatible type, but the source pointer points to an object which
is ‘const’ or ‘volatile’ qualified and the destination pointer does not.

type qualifier mismatch in argument %d

The argument expression is a pointer to a ‘const’ or ‘volatile’ qualified
version of a compatible type to the parameter’s type, but the parameter is
a pointer to a non-’const’ or ‘volatile’ qualified version.

obsolete use of implicit ‘int’ detected

The ANSI standard allows a variable to be declared without a base type
being specified, e.g., “extern x;”, in which case a base type of ‘int’ is implied.
This usage is deprecated by the standard as obsolete, and therefore a
diagnostic is issued to that effect.

enumeration value exceeds maximum range

An enumeration value has been declared which is not expressible in a
‘signed long’ format and the enumeration tag has negative enumeration
values. An ‘unsigned long’ representation will be used for the enumeration,
but relative comparisons of those enumeration constants which have
negative representations may not behave as expected.

constant value %d is too wide for bitfield and will be truncated

The given value cannot fit into the bitfield. Truncation by ANDing with the
size of the bitfield was performed.

%s cannot have ‘overlay’ storage class; replacing with ‘static’

Parameters with ‘overlay’ storage class are not permitted at this time. When
the default local storage class is ‘overlay’, the ‘static’ storage class will be
assigned to parameters.

DS51288C-page 94

© 2004 Microchip Technology Inc.

MPLAB® C18 Diagnostics

2072:

2073:

2100:

2101:

D.3 MESSAGES
3000:

3001:

3002:

invalid storage class specifier for %s; ignoring

The storage class specifier used is not permitted for this declaration.
null-terminated initializer string too long

The null-terminated initializer string cannot fit in the array object.
obsolete use of ‘overlay’ for symbol ‘%s’, processing as auto

The overlay storage class is not supported in extended mode, the
declaration will be processed as if storage class ‘auto’ has been specified
instead.

obsolete use of ‘static’ storage for parameter ‘%s’, treating as ‘auto’

When compiling in Extended mode, MPLAB C18 requires all function
parameters to be of automatic storage class. See the MPLAB® C18 User’s
Guide for more information.

test of floating point for equality detected

Testing two floating point values for equality will not always yield the desired
results, as two expressions which are mathematically equivalent may
evaluate to slightly different values when computed due to rounding error.

optimization skipped for ‘%s’ due to inline assembly

Functions which contain inline assembly are not run through the optimizer
since inline assembly may contain constructs which would result in the
optimizer performing incorrectly.

comparison of a signed integer to an unsigned integer detected

Comparing a signed integer value to an unsigned integer value may yield
unexpected results when the signed value is negative. To compare an
unsigned integer to the binary equivalent representation of the signed
value, the signed value should first be explicitly cast to the unsigned type
of the same size.

© 2004 Microchip Technology Inc.

DS51288C-page 95

MPLAB® C18 C Compiler User’s Guide

NOTES:

DS51288C-page 96 © 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Appendix E. Extended Mode

This appendix details the differences between the Non-extended and Extended modes.
The differences include:

» Stack Frame Size

* static Parameters

* overlay Keyword

* Inline Assembly

» Predefined Macros

+ Command-line Option Differences
» COFF File Differences

E.1 SOURCE CODE COMPATIBILITY
E.1.1 Stack Frame Size

When the compiler is operating in Extended mode, the total size of local variables is
limited to 96 bytes per function as compared to 120 bytes when the compiler is
operating in Non-extended mode.

E.1.2 static Parameters

static parameters are not supported when the compiler is operating in the Extended
mode. A warning diagnostic will be issued when the compiler is operating in the
Extended mode and a static parameter is seen. In addition, the compiler will act as
if the code explicitly specified an aut o parameter. The parameter will now be stored on
the stack instead of being allocated globally. Since the total size of stack space for
auto parameters is limited to 120 bytes per function, the application may result in a
“parameter frame too large” diagnostic being issued that does not occur when the
compiler is operating in Non-extended mode. To resolve this, the function will need to
be modified to take fewer parameters.

E.1.3 overlay Keyword

The overlay keyword is not supported when the compiler is operating in the Extended
mode. A warning diagnostic will be issued when the compiler is operating in the
Extended mode and the overlay keyword is seen. In addition, the compiler will act as
if the code explicitly specified the auto keyword. Similar to static parameters, the
overlay local variable will now be stored on the stack instead of being allocated
globally. Since the total size of local variables is limited to 96 bytes per function, the
application may result in a “stack frame too large” diagnostic being issued that does not
occur when the compiler is operating in the Non-extended mode. To resolve this, the
function will need to be modified to contain fewer auto local variables. One way to do
this is to change the overlay variables to static.

Note: Overlay sections (#pragma overlay) are supported by the compiler
regardless of the mode in which it is operating.

© 2004 Microchip Technology Inc. DS51288C-page 97

MPLAB® C18 C Compiler User’s Guide

E.1.4 Inline Assembly

When operating in Extended mode, the compiler will accept the extended instructions
in inline assembly — ADDFSR, ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and
SUBULNK; however, when operating in Non-extended mode, the compiler will issue an
error when it encounters an extended instruction in inline assembly.

In addition, when operating in Extended mode, the compiler will not recognize the
bracketed syntax used by the MPASM assembiler for indicating the indexed with literal
offset addressing (e.g., CLRF [2]). Instead, the compiler will recognize the indexed
with literal offset addressing in inline assembly when the £ operand is less than or equal
to 0x5F and the access bit operand (a) is set to zero (e.g., CLRF 2, 0). This same
instruction will be interpreted as referencing access RAM when the compiler is operat-
ing in Non-extended mode.

E.1.5 Predefined Macros

The predefined macros can be utilized in source code to make the source code
compatible regardless of the mode in which the compiler is operating. The
___EXTENDED18 _ predefined macro will be the constant 1 when compiling for
Extended mode; whereas, the TRADITIONAL18 predefined macro will be the
constant 1 when compiling for Non-extended mode.

Here are some examples of specific instances where this may be useful:

1. Using the predefined macros to use static parameters in Non-extended mode
and auto parameters in Extended mode:
#ifdef EXTENDED18
#define SCLASS auto
#else
#define SCLASS static
#endif

void foo (SCLASS int bar);
2. Using the predefined macros to utilize the overlay keyword in Non-extended
mode and the auto keyword in Extended mode:
#ifdef EXTENDED18
#define SCLASS auto
#else
#define SCLASS overlay
#endif

void foo (void)

{

SCLASS int bar;

}

3. Using the predefined macros to use only Non-extended mode instructions in
inline assembly in Non-extended mode and to use Extended mode instructions
in inline assembly in Extended mode:

_asm
#ifdef _ EXTENDED18___
PUSHL 5
#else
MOVLW 5
MOVWF POSTINC1, O
#endif

MOVF POSTDEC1, 1, O
_endasm

DS51288C-page 98

© 2004 Microchip Technology Inc.

Extended Mode

E.2 COMMAND-LINE OPTION DIFFERENCES

The following command-line options are not supported when the compiler is operating
in the Extended mode:

» Default Local Storage Class (-scs/-sco/-sca)
When operating in the Extended mode, the compiler only supports default auto
locals.

+ Default Data in Access Memory (-0a+/-0a-)
Since the amount of access RAM on an Extended mode device is limited, the
compiler does not support data being placed in access RAM by default when
operating in the Extended mode.

E.3 COFF FILE DIFFERENCES

E.3.1 Generic Processor

The processor type (proc_type) specified in the COFF file’s optional file header when
compiling for the generic processor (-p18cxx) will be set to PIC18F4620 when the
compiler is operating in the Extended mode and will be set to PIC18C452 when the
compiler is operating in the Non-extended mode.

E.3.2 File Header’s £ flags Field

When operating in Extended mode, the COFF file that is generated will have the
F_EXTENDED18 bit of the file header’'s £ flags set. This bit is not set when the
compiler is operating in the Non-extended mode.

© 2004 Microchip Technology Inc. DS51288C-page 99

MPLAB® C18 C Compiler User’s Guide

NOTES:

DS51288C-page 100 © 2004 Microchip Technology Inc.

MPLAB® C18 C COMPILER
MICROCHIP USER’S GUIDE

Glossary

A

Absolute Section

A section with a fixed address that cannot be changed by the linker.

Access Memory

Special general purpose registers on the PIC18 PICmicro microcontrollers that allow
access regardless of the setting of the Bank Select Register (BSR).

Address

The code that identifies where a piece of information is stored in memory.
Anonymous Structure

An unnamed object.

ANSI

American National Standards Institute

Assembler

A language tool that translates assembly source code into machine code.
Assembly

A symbolic language that describes the binary machine code in a readable form.
Assigned Section

A section that has been assigned to a target memory block in the linker command file.
Asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

B

Binary

The base two numbering system that uses the digits 0-1. The right-most digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

Cc

Central Processing Unit

The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the Arithmetic Logic Unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address
bus, and accesses to the stack.

Compiler

A program that translates a source file written in a high-level language into machine
code.

© 2004 Microchip Technology Inc. DS51288C-page 101

MPLAB® C18 C Compiler User’s Guide

Conditional Compilation

The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

CPU

Central Processing Unit

E

Endianness

The ordering of bytes in a multi-byte object.

Error File

A file containing the diagnostics generated by the MPLAB C18 compiler.
Extended Mode

In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed
with literal offset addressing.

F

Fatal Error
An error that will halt compilation immediately. No further messages will be produced.

Frame Pointer

A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables.

Free-standing

An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <float .h>,
<is0646.h>, <limits.h>, <stdarg.h>, <stdbool .h>, <stddef.h> and
<stdint.h>.

H

Hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f).
The digits A-F represent decimal values of 10 to 15. The right-most digit counts ones,
the next counts multiples of 16, then 162 = 256, etc.

High-level Language

A language for writing programs that is further removed from the processor than
assembly.

|
ICD
In-Circuit Debugger

ICE
In-Circuit Emulator

IDE
Integrated Development Environment

DS51288C-page 102

© 2004 Microchip Technology Inc.

Glossary

IEEE

Institute of Electrical and Electronics Engineers

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an ISR so that the event may be processed. Upon completion of the ISR,
normal execution of the application resumes.

Interrupt Service Routine

A function that handles an interrupt.

ISO

International Organization for Standardization

ISR

Interrupt Service Routine

L

Latency

The time between when an event occurs and the response to it.

Librarian

A program that creates and manipulates libraries.

Library

A collection of relocatable object modules.

Linker

A program that combines object files and libraries to create executable code.
Little Endian

Within a given object, the least significant byte is stored at lower addresses.

M

Memory Model

A description that specifies the size of pointers that point to program memory.
Microcontroller

A highly integrated chip that contains a CPU, RAM, some form of ROM, I/O ports and
timers.

MPASM Assembler

Microchip Technology's relocatable macro assembler for PICmicro microcontroller
families.

MPLIB Object Librarian

Microchip Technology's librarian for PICmicro microcontroller families.
MPLINK Object Linker

Microchip Technology's linker for PICmicro microcontroller families.

N

Non-extended Mode

In Non-extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.

© 2004 Microchip Technology Inc. DS51288C-page 103

MPLAB® C18 C Compiler User’s Guide

o)
Object File

A file containing object code. It may be immediately executable or it may require linking
with other object code files, (e.g. libraries), to produce a complete executable program.

Object Code
The machine code generated by an assembler or compiler.
Octal

The base 8 number system that only uses the digits 0-7. The right-most digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.

P

Pragma
A directive that has meaning to a specific compiler.

R

RAM

Random Access Memory

Random Access Memory

A memory device in which information can be accessed in any order.

Read Only Memory

Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.

ROM

Read Only Memory

Recursive

Self-referential (e.g., a function that calls itself).

Reentrant

A function that may have multiple, simultaneously active instances. This may happen
due to either direct or indirect recursion or through execution during interrupt
processing.

Relocatable

An object whose address has not been assigned to a fixed memory location.
Run-time Model

Set of assumptions under which the compiler operates.

S

Section

A portion of an application located at a specific address of memory.
Section Attribute

A characteristic ascribed to a section (e.g., an access section).
Special Function Register

Registers that control 1/0 processor functions, 1/O status, timers or other modes or
peripherals.

DS51288C-page 104

© 2004 Microchip Technology Inc.

Glossary

Storage Class

Determines the lifetime of the memory associated with the identified object.
Storage Qualifier

Indicates special properties of the objects being declared (e.g., const).

\'

Vector

The memory locations that an application will jump to when either a reset or interrupt
occurs.

© 2004 Microchip Technology Inc. DS51288C-page 105

MPLAB® C18 C Compiler User’s Guide

NOTES:

DS51288C-page 106 © 2004 Microchip Technology Inc.

MICROCHIP

MPLAB C18 C COMPILER
USER’S GUIDE

Index
Symbols CCITIE toiiee e 45
#pragma. See Pragmas .SEXINGLADIE i 17
2 EXEENACA et 9-10 ctmpdata 30, 47
= mHELD e —————————————— 7 L LBCXX 16
--help-MESSATE wiviiieeeeeeeee e e ee e ee s 8 _ EXTENDEDIS8_ oo 16, 98
--help-message-all ...iiiiieiieeeieenns 8 _ LARGE 16
CRelp-MESSAGE-L1iSE wvoroorsereeeeeeeeeeeeereeee 8 _ PROCESSOR .evtutiueaueaeeseeneeneeneeeeneanesnesnessesnsseeseenes 16
e =X EENACA e 9-10 _ SMALL ceeeiieeee e 16
S D e e e e e e et e e e aaaaerrrra———————————— 9 __TRADITIONALIS__ .oviviniiiniininisni 16, 98
B L= ST 8 CASM e e 20
e i < TSRt 8 _CONFIG_DECL oottt 34-35
OO 15 ZENAASI oo 20
R e 1,77 A
= TR PUPRRESPIPRRE 40 Access RAM 14, 24, 33
ST e 16, 37 ANONYMOUS SHUCIUIES wvvvvreoooooooosooeos 19 33
SIS trtttieee et e e e et eeeeaeaerrr— b ———————————aaerrerna——_ 16, 37 Assembler
e 11 R 8
£ oo 49 IMOMMEL Lo 20
VS. MPASM ... 20
O L= L PPN 24,99 MPASM ... e 20
0] o X RN 49-50 A
SOD= e 49-50 ssembly
INMNE oo 20, 98
SO e 49, 55
=1 R 20
O T R 49, 55 -
ZO oo 16,78 | OMAAST s 20
—8;1+ ’ 49 Mixing with C ..., 40-44
... BUEO oo 314, 38, 40-41, 91
S OMm ttieee e e e e e e e e e e e e e e e e e eea i —————— 49
B0} 4 SRR 49-50 B
SOTL= ettt 49-50 BOR oo 27-28, 34, 47
S0P+ e, 49, 53-55
OB oo 49, 53 c
0] <X T S 49, 55-56 CHAT tiiiiieciirrree e e e e 11, 77-78
“OP@ = uuunneninrrr et e e e e e e e e e e e aa e e ——————————— 49, 55-56 S1GNEA tiiiiiiii e 11,77
0T e e e e e e e e e e e e e e e rea e ——————— 49 54 UNSIGNEA .eitiiiiiiiiiiiiiiaeaaaaeeeeaeeesesenenenrenees 11,77
O oSSR 49, 54 CLEWAL () eoreieeeiiieee e 34
OBt ettt —— 49, 51-52 T Yo LT PR RPN 21-26
S0 ettt —————————aaaar———— 49, 51 COFF File
o] S ST 49, 52 Differences ..o 99
SO = et e e aaa e 49, 52 Format ... 61-76
SOUF ettt et ee et 49, 53 Command-line OptionNsc.ccccervenrievennennn 7,81-82
DU m et e 49 53 ——extended ..cciiieieeeeee e 9-10
S OWH ettt e et et e e et e aaaaaaeeeeaeaa e nnnanaaenes 49, 51 —-help 7
0T = e e e e e e e e e e e e e e aaaaaaaannnna—————_ 49, 51 --help-messageccoooiiiiiiiiiniinininieeee, 8
SR 9, 16, 34, 59 --help-message-allcoiiiiiiiiienenn. 8
ST L R 56 --help-message-1ist ...cccvvvimiriinineieeeenenn. 8
LI TR 14, 93, 99 --no-extendedccceeeiniiiiniine e, 9-10
S 00 e e 14, 93, 99 D et e e e e e e e e aararea—————— 9
DSOS ettt e e e e e ——————————————— 14, 93, 99 B s 8
VA= o oo Y=1= N 7 O e 8
S et e e et eeeeetteeeeetaaeeeeeataeeerettaaeeeetaaaeaeenaaaares 8 S 15

© 2004 Microchip Technology Inc.

DS51288C-page 107

MPLAB® C18 C Compiler User’s Guide

B N 11,77
B =TT 40
R (1 RS 16, 37
IS ettt ettt et e e a e —————— 16, 37
S TLW ettt et et e e e e e ea et et ata— e ea e raa—a.—an 8
& LR 49
084 ceeiriee et 24,99
0D ettt ——————————————— 49-50
0D = e —————————— 49-50
“OQHF cerrrrrrrrre e e e e e ——————— 49, 55
O = et a e e e ————————- 49, 55
@ R RRTRTS 16, 78
L0115 ST 49
B0 11 49
B0 s T R 49-50
“OIl= terrrrrre e e e e e e e e e e e e e e e e e e ————————— 49-50
SO+ ceetrreee e 49, 53-55
) o R PP STTRR 49, 53
“OPB+ cvrrrreee e 49, 55-56
“OPB = cirreree e 49, 55-56
“OTH ceeerrrrrrrrrrre e et e e e e e e e e e e e e e —————————— 49, 54
0T = et er e e e e e e e e e e e e ————————— 49, 54
OB+ cerrrrrrrrrrrrrr e e ———— 49, 51-52
OB = ettt et e e e e e e e e e e e e ————————- 49, 51
B o PRSI 49, 52
SO = et 49, 52
SOUAF etieeei et eeaan 49, 53
SOU = crerrrrrrerer e e e et e e e e e e e e e e e e e e e aa—a—————— 49, 53
“OWAH eeurerrrrrrerereerrerreeeetaeaeaeeeeaeeaaasassnrrrrrrees 49, 51
OW = ererrrrrrrrer e e taeaeaeeeaaeeaeaaaaaraaaa——a 49, 51
S reeeeeee e 9, 16, 34, 59
“DBSI1 it 56
=TT NSRS 14, 93, 99
S B 00 et 14, 93, 99
=T = T 14, 93, 99
V=Y o o Yo Y=T= ST 7
B N 8
Command-line Usagecccceeevivieeeeeiiiiiieeeee, 7, 81
Compiler Temporariescc.cccccvveeennn. 27-28, 30, 47
Compiler-managed Resourcescccceveeeneee 46-47
Conditional Compilationcccoeiiiiiiiiiiiieeiiieeee 9
Configuration Bits. See Configuration Words
Configuration Wordsccccoeevrriiieiieeenieeene 35-36
[T} o =1 oA 14, 84
Customer Notification Serviceccccccceeviiieieieennnnn, 5
Customer SUPPOIteeiiiieiiiiieeeiee e 6
D
Data Memory Pointers. See ram Pointers
Default Sectioncccccceeiiiiiiiiiiiieees 23-24
DiagnostiCscuuvieeiiiiiiiei e 8, 83-95
Level of Warningccccoeeeeieiiiiiieeeeieeeeee 8
SUPPIESSING ..evveiieeiciieee e 8
Documentation Conventionscccceeevvvvvveveeeennnns 2
o Lo 10T o 1 =N 12
E
Endiannessccoeeiiiiiiiiiicccce e 12
Extended Instructions
ADDFSR eiuiiiiiiiee et 9, 98
ADDULNEK ..tiiiiiiieeeeeteeeeeee et e e e 9, 50, 98

CALLW et ee e e e e e e e e e e e e eae e e e eeaans 9, 98
MOVSTE eoeeeeiieeeeeee et rera e e e e e e 9,98
MOVSS eoeeeeieeeeeeee et reeaeaeee s 9, 98
PUSHL tvvvvveeeeieeeeeieeeeeeeeeeeeeeeeseeseeesnsssssssnsnennes 9, 98
SUBFSR ettrieeeeiiirieeeeeieirereaesenssseeessssnnnneseaseas 9, 98
SUBULNEK cevuueeiiiieeeeeiieeeeeetieeeeeeranaeeeennnnns 9, 50, 98
Extended Modeooovviiieiiiiie e 97-99
COFF File ..ot 62, 64
DiagnostiCscooeviiiiiiiiiiieeeeeeen 91, 93, 95
Predefined Macrocccooeeeeeeeecvvieeereeeeeees 16
Selecting the Modecccceeeeviiiiiiieennn, 9-10, 82
S0 =5 o R 13, 33, 40, 42, 44
F
= T PR 14-15, 24, 37
ST o 12
Floating-point TYPEScccvviiiieiiiiiee e 12
[L Y01 o X = 12
LY T 12
VS. IEEE 754 ... 12
Frame Pointerooooviiiiieeiee 38, 47
INItializing ..occvveeee e 38, 40
FORO titttiieiiie ettt e e 39, 47
FORL oo et 38,45, 47
FSR2 ttteveeeieiiieieieieeeeeeeeeeeeieiessesssssssssssnens 38, 40, 45, 47
G
Generic ProCessorcceeeeeeeeeeeeeeeviinnnn. 9, 59, 64, 99
Header Fileoovvvveeeiiiiiieceee e, 34
H
Hardware Stackcccccveveeeeeieiiieieieeeeeeeeeeeeeeeeeens 38
Header Files
GENENIC ProCESSOrcoeveeeeeeeeeeeeeeeeccireveeeees 34
Processor-specificcccveeeeerieiiienennenn. 33-34
SYSIEM i 15
L0 LT SN 15
High-priority Interruptccooiiiis 27, 31
|
e = oF- T, 21-24, 26, 45
IEEE 754 ...ttt 12
Inline ASSEMDIYcooiiiiiiiiiii e 20, 98
1= PR OPROP 20
_eNAASM eeiiiieiie e e 20
Macros. See Macros, Inline Assembly
Inline assembly ... 20
int
S1gNEA it ———— 11,16
UNSIGNEQA tiiiiieieeeeeiiie e e e e e e e e e e e e 11
Integer Promotionsccccceevveiieeeeccecieee e 16
INtEger TYPES oot 11
CRAT e 11, 77-78
S1gNEA .\ttt 11,77
UNSIGNEQ wiviviriiiiiiiiieieee e e e 11,77
int
S1gNEd oo 11, 16
UNSigned .o 11
long
S1GNEA .ttt 11
UNSIGNEA tiiiiiiiiiiiiieeee e 11

DS51288C-page 108

© 2004 Microchip Technology Inc.

long Short int .. 11
short
S1GNEQA .t 11
UNSigned ..oeeeiecieee e 11
Short 10ng INt e 11
SI1GNEA criiiiiiiiiiiee e 11
UNSIGNEA wiiiiiiiiiiiieieaeeeeeeeeerniieeeeeeeeeees 11
Internal Assemblerccccoiiiiiiii 20
VS. MPASM ... 20
Interrupt
High-priority ... 27, 31
LatenCy ..ooovveeeiiiee e 31
LOW-PFIOFItY ..ooeeeeeeiiieeeieceeee e 27, 31
NESHING ..oeeiiiiie e 31
Saving and Restoring Context 27,30
VECIOIS e 29
interrupt pragmaccooccciiiii e 27-31
Interrupt Service Routine 27-31, 46, 103
interruptlow pragmaccoceeeiiiiiine 27-31
K
Keywords
R 111Ut 20
_eNdasM .o 20
AULO teeiiiiiiieee e e 13-14, 38, 40-41, 91
[T} o =1 oA 14, 84
1SS S o< Y o TR 13, 33, 40, 42, 44
AT ot 14-15, 24, 37
TIEAT teeieueeeeeieieeeeeieeae e e e 14-15, 24-25, 33, 37
OVET LAY erereeeeiiiirieaeeereieree e et e e e s sneeeee s 13-14
Bar= 11N 14-15
B =TS =1 o = USSR 13
TOM teiiieiieeeeeeieeeeee e e eireeeee s 14-15, 17-18, 22, 26
SEALLC tiiie e 13-14, 40, 42
EYPEAETE iiiiiiiiiiiiie e 13
VO1atile oo 14, 33
L
Large Memory Modelcccooviiiiiiieiiniiciieec e 37
Linker Scripts
ACCESSBANK ..oiiiiiiiieieeeeeieeee e ee e s 25
SECTION .oetieiiiueieeeaeeaiieeeeeeeanereeeeeasnneeeaaens 21,26
Little Endianocceviiiiiien 12,103
long
SI1GNEA tiiiiiiciiiee s 11
UNSIGNEA iriiiiiiiiiiiie e 11
long ShOTrt ANt . 11
Low-priority Interruptccccooviiiiiiiiiiee e 27,31
M
Macros
DefiNiNg .eeeeeeeeeeee e 9
Inline Assembly
CLEWAL () torceeeerrie e 34
1[0 o X () PRSPPI 34
RESEE () tiueiiii i 34
RICE (vt i) e 34
RINCE (v v i) i 34
RECE (ot i) e 34
RINCE (.. 0) e 34
SL1EEP () terereeeeeeiiiiee et 34

1S3 2N o (R R 34
Predefined
_ 1BCXX tiieieeree et 16
__ EXTENDEDI18 _ oocvecieeeeeereenieeneneen 16, 98
_ LARGE iiiiiireeee e 16
___PROCESSOR .eceiuieeieeiiieeiee et 16
_ SMALL i 16
__ TRADITIONALLS ooverrieeriennnn 16, 98

MATH DATA ..oiitiiireeneesireenreesireesseesseeareesseesnees 30, 47

MCC_INCLUDE ..otiitiesueesreesinenreesieeeneessessneesneesneens 15

Memory MOdelScovvvviiiiiiieiiiieee e 37
Defaultoovveeeeeeeeeee e, 37
Large .eoeoieieeeiie e 37
OVEITIdiNG .eeeeeiiiiiieee e 37
SMall oo 37

Microchip Web Siteccooeoieiiiieieiieeccceeee e 5

Minimal Contextooovvveiiiiiiiii s 27

Modes
Extendedcccooeeeeiiiiiiie e, 97-99

COFF File .. 62, 64
DiagnostiCsccoiciieeeiiiiiieeeene 91, 93, 95
Non-extendedooovvvviieeieiiiieiiiiieeen, 97-99
Access Sectionoooveveieeiiiiiiiiieiie, 24, 82
COFF File et 64
DiagnostiCscovvevviiiiiiieeiciieee e 91
static Parameterscccooovvvvvveveeenenen. 42
Storage Classescccccceeeeeveenenn. 13-14, 81
Predefined Macrocccccceeeeeeeeeeeeeeeeien, 16
Selecting the Modecccccveviiieiiieene 9-10, 82

MPASM .ot 20

MPLINK ..ot 13-14, 20, 45

N

o LT R 14-15, 24-25, 33, 37

Non-extended Modecoeeeeeiiiiiiiccciininnn, 97-99
Access SeCtioncccooeeeiiiiiiiiiiiee e 24,82
(010 1 ol o = 64
DIiagnostiCs ...ooovveeieeiieiiee e 91
Predefined Macroceveeeeeeeeieeieeeien, 16
Selecting the Modeccccceiviiiiiieenns 9-10, 82
static Parametersccocooeeeiiiiiiiiiiiiiiniinnnn. 42
Storage Classesccoccveeeevciveeeeeeciienn. 13-14, 81

[o () USSR 34

(o]

Optimizationscoooiiiiiii e 49
Bankingccoooiiiiiii e 49-50
Brancheeeeeiiiiieeeee e 49-50
Code Straighteningcccccceeveeniineeen. 49, 51-52
Copy Propagationccccccveeeeeennnnenn. 49, 53-55
Dead Code Removalccooeveveeeeiieeennnnnnn. 49, 55
Duplicate String Mergingcccocceveviieeeniienenne 49
Procedural Abstractioncccccccoo..... 49, 55-56
Redundant Store Removal 49, 54
Tail Mergingcooeveiiiieee e 49, 52
Unreachable Code Removal 49, 53
WREG Content Trackingc.cceccvveeeennn. 49, 51

QUIPUL FIlES oo 8

OVETL LAY urrieieiieirriieeeeairre e e e ee e 13-14, 97-98

© 2004 Microchip Technology Inc.

DS51288C-page 109

MPLAB® C18 C Compiler User’s Guide

P
PLBCXXX . hl totiiiieiieiiiiiee et 34
= O PP PO PO TR TRRORPPPRPIN 47
PCLATH iiuinetteeeeeeeeeeeeeteaaaaaaaaeesesaaaannnnenenenneseeees 47
PCLATU etieeieeeeeaueeeeaneeeesneeeesseeeeanseeesseeesnseeesanseeennn 47
Pointer

Frame ..o 38, 47

INitializingooocvveieeeeeee e 38, 40

SIZES e 37

] £ 1] R 38, 47
Pointers

Bt 1 R 15, 17

By 1| R 15, 17, 37

To Data memory. See ram Pointers

To Program Memory. See rom Pointers
PORTA iiiiiuiiiiteteneneeeeeeeeaaaaaaaaesasasssasannnnenensnnenees 33-35
Pragmas

#pragma interrupt ...ceeeeeeeee... 27-31

#pragma interruptlow ...cceeeeeee... 27-31

#pragma SeCtiOontyPe .cvccvcieieeeenenn. 21-24

#pragma varlocate ... 31-32
Predefined Macros

_ 1BCXX it 16

_ EXTENDEDI8__ .coccciiiiiiiciiien i 16, 98

 LARGE. ciiiieeiee ettt 16

__ _PROCESSOR eeeiuteeeeeieeeeeeaesieeeeaneeeenneeesneeens 16

_USMALL ceevieeeiee et 16

__ TRADITIONALLS .iivcercierieereennenene 16, 98
Processor

GENEINIC eveeeeeeeeeeeeeeeee e 9, 59, 64, 99

Selection ... 9-10

TYPE e 9-10
123 270) 5 SRR 47
123270) = USROS 39
123270) SRS 39
Program Memory Pointer. See rom Pointers
R
RAM

ACCESS ..o 14, 24, 33
ot (R 14-15

PoINters ..o 15, 17
B a=Ys b I =1 o = U ORPR 13
Register Definitions Fileccccooecvviieeiinnnee. 33, 35
Reset VeCtor ..o 45
J2XSY=T= Y ol () N 34
RETFIE. See Return From Interruptcccccoeee. 27
Return from Interrupt ... 27-28
Return Value

LOCAtioN ... 39
RICE (4 0] teiieeiiee et e e 34
RINICE (o o o) et e e e e s 34
TOM cvrreeeerieeereeeessteeeeteeesneeeesneeens 14-15, 17-18, 22, 26

PoINtersoveeeeeeeieieeeeeee e, 15,17, 37
hate)111e =X o= N 17, 21-23, 26
el (R SRR 34
|2 5as s Vo 3 (R LSRN 34
Run-time Modelccccooieiiiiiiniieee e, 37-47

S
SECHON evveiiiiiieeeeeeeeee s 21
LCINAE e 45
.SErIngtable . 17
L EMPAALA ciiiiiec e 30, 47
ADSOIULE oo 21
ASSIgNEd ..oooieie 21
Attributes ..o 23-26
ACCESS tirrrrrrriiiereeeeeeeeerrriaaaaaeeaaaaeeeens 24-25
OVET LAY tiiiiiiiiiiiieeieeee e 25-26
COAE i 21-26
D= = (U] | 23-24
B - oF- N 21-24, 26, 45
MATH_ DATA ..oeiitiiereenieeereesiresreesieeesneesnenans 30, 47
haye)111e F= 1 of - NSRS 17, 21-23, 26
LUTe = o N 21-24, 26-27
UNnassignedcocceeeiiieeiiiii e 21
Section Type Pragmacccccceeeiiiiiienieniieenn. 21-24
SFR. See Special Function Registers
Shadow Registersccccoeeiiiiiiiiiiie e, 27, 31
short
S1GNEA ittt s 11
UNSIGNEd oo 11
Short 10Ng INT i 11
S1GNEA it ———— 11
[ORa Y= o T=Yo RN 11
Sizes
POINtEr oo 37
S1EEP () tereetiiiiiiae e 34
Small Memory Modelcccceeiiiiiiiiiiieeece, 37
Software Stack 14, 27, 31, 38, 40-41, 45
Large ..o 40
Special Function Registers 27, 33-35, 46
12 RS 27-28, 34, 47
FSRO teteiueeeeiuieeeaieeeeseeeeateeesnneeesneeeenneeeennes 39, 47
FORL ottt e 38,45, 47
FSR2 wiiieieieeiiieeeeieeesneeesneeeeenneeeeennas 38, 40, 45, 47
=T U 47
PCLATH titeiueeeeeieeeeeteeeseeeeesneeeesneeeesseeeenneeesnneeas 47
PCLATU teeeiuieeeeteeeeueeeeseeeeesneeeesmneeesnneeeenneeesnneeas 47
1210 2R 33-35
123 310) 0 OSSR UPRR 47
PRODH .etttiieieitietetaeaaaaaaaaaeassssasaasnnsssasssssseseeeeee 39
PRODLI tettttteeeeeeeeeraeaaaaaaaaaaasasaaaaaannnnnnnensnseseeeeees 39
STATUS ettt eeeee e e et e e e e e e e e eeaaeeeeraaaeeeees 28, 47
TABLAT ceieeieeeeeseteeeeneeeesneeeesneeeeaseeesneeeanseeeens 47
TBLPTR ceeteiiueeeesteeeaneeeesneeeesnneeeaseeesnneeeansneeens 47
WREG tvveeeeieeeeieeeesveee e 27-28, 34, 39, 41, 47
Stack
Hardwareccccoeeieiiiiiieee e 38
0] 0] (Y 38, 47
Softwareccccceeveenee 14, 27, 31, 38, 40-41, 45
Large ..oooooieeee e 40
Startup Codeovevieeiiiie e 45-46
(010153 (o] 1 41741 Vo SRR 46
SEALLIC tiirriiie e 13-14, 40, 42, 97-98
STATUS ettt e e e eeas 27-28, 47

DS51288C-page 110

© 2004 Microchip Technology Inc.

Storage Classescccocvvervieiiniieeiiiee e 13-14
AULEO civiiiiiiie e 13-14, 38, 40-41, 91
IS0 SN o 13, 33, 40, 42, 44
OVETL LAY rrieieeiiciieiieeeeeirreee e e e st 13-14, 97-98
TEILSTET tiiiiiiiiiiie it 13
SEALIC i, 13-14, 40, 42, 97-98
EYPEAET i 13
Storage Qualifiersccccecviiiiiin e 14-15
[T} o =1 oA 14, 84
= U 14-15, 24, 37
oY== b o 14-15, 24-25, 33, 37
a1 KR 14-15
TOM eiieeneerereeeeeeeeeeereeeeaeeeas 14-15, 17-18, 22, 26
VOLlatile e 14, 33
Structures
ANONYMOUSoeiiiiiiiiiieieeeieee e 19, 33
SWADE (+ 00) e 34

T
TABLAT utveieeeeeitereeeeeasereeaesansseeeeessnssseeeessansssseeess 47
TBLPTR ceiuteeeeaeeaauueeeaaaaannseeaasaasseeeaasaanseseaasaannseeeaess 47
Temporaries

(070001 o] 1 1= 27-28, 30, 47
[507 01= T L= 13
U
15 Te 8 o 21-24, 26-27
\'}
varlocate pragmaccooocceeeeeiiiiiiiee e 31-32
VOLatile oo 14, 33
W
WREG uteeeeeieeesnteeeseeeesneeaennieeennes 27-28, 34, 39, 41, 47

© 2004 Microchip Technology Inc.

DS51288C-page 111

MPLAB® C18 C Compiler User’s Guide

NOTES:

DS51288C-page 112 © 2004 Microchip Technology Inc.

Index

NOTES:

© 2004 Microchip Technology Inc. DS51288C-page 113

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support: 480-792-7627

Web Address: http://www.microchip.com

Atlanta

3780 Mansell Road, Suite 130
Alpharetta, GA 30022

Tel: 770-640-0034

Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180
Itasca, IL 60143

Tel: 630-285-0071

Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001

Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Tri-Atria Office Building

32255 Northwestern Highway, Suite 190
Farmington Hills, Ml 48334

Tel: 248-538-2250

Fax: 248-538-2260

Kokomo

2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090
Irvine, CA 92612

Tel: 949-263-1888

Fax: 949-263-1338

San Jose

1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444

Fax: 650-961-0286

Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Australia

Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia

Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Unit 706B

Wan Tai Bei Hai Bldg.

No. 6 Chaoyangmen Bei Str.

Beijing, 100027, China

Tel: 86-10-85282100

Fax: 86-10-85282104

China - Chengdu

Rm. 2401-2402, 24th Floor,

Ming Xing Financial Tower

No. 88 TIDU Street

Chengdu 610016, China

Tel: 86-28-86766200

Fax: 86-28-86766599

China - Fuzhou

Unit 28F, World Trade Plaza

No. 71 Wusi Road

Fuzhou 350001, China

Tel: 86-591-7503506

Fax: 86-591-7503521

China - Hong Kong SAR

Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road

Kwai Fong, N.T., Hong Kong

Tel: 852-2401-1200

Fax: 852-2401-3431

China - Shanghai

Room 701, Bldg. B

Far East International Plaza

No. 317 Xian Xia Road

Shanghai, 200051

Tel: 86-21-6275-5700

Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China

Tel: 86-755-82901380

Fax: 86-755-8295-1393

China - Shunde

Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao

Rm. B505A, Fullhope Plaza,

No. 12 Hong Kong Central Rd.

Qingdao 266071, China

Tel: 86-532-5027355 Fax: 86-532-5027205
India

Divyasree Chambers

1 Floor, Wing A (A3/A4)

No. 11, O’'Shaugnessey Road
Bangalore, 560 025, India

Tel: 91-80-22290061 Fax: 91-80-22290062
Japan

Benex S-1 6F

3-18-20, Shinyokohama

Kohoku-Ku, Yokohama-shi

Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku

Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934

Singapore

200 Middle Road

#07-02 Prime Centre

Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan

Kaohsiung Branch

30F - 1 No. 8

Min Chuan 2nd Road

Kaohsiung 806, Taiwan

Tel: 886-7-536-4818

Fax: 886-7-536-4803

Taiwan

Taiwan Branch

11F-3, No. 207

Tung Hua North Road

Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Austria

Durisolstrasse 2

A-4600 Wels

Austria

Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark

Regus Business Centre
Lautrup hoj 1-3

Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France

Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage

91300 Massy, France

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79
Germany

Steinheilstrasse 10

D-85737 Ismaning, Germany
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy

Via Quasimodo, 12

20025 Legnano (MI)

Milan, Italy

Tel: 39-0331-742611

Fax: 39-0331-466781
Netherlands

P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399

Fax: 31-416-690340

United Kingdom

505 Eskdale Road

Winnersh Triangle
Wokingham

Berkshire, England RG41 5TU
Tel: 44-118-921-5869

Fax: 44-118-921-5820

02/17/04

DS51288C-page 114

© 2004 Microchip Technology Inc.

	Preface
	Chapter 1. Introduction
	1.1 Overview
	1.2 Invoking the Compiler

	Chapter 2. Language Specifics
	2.1 Data Types and Limits
	2.2 Data Type Storage - Endianness
	2.3 Storage Classes
	2.4 Storage �Qualifiers
	2.5 Include File Search Paths
	2.6 Predefined Macro Names
	2.7 ISO Divergences
	2.8 Language Extensions
	2.9 Pragmas
	2.10 Processor-specific Header Files
	2.11 Processor-specific Register Definitions Files
	2.12 Configuration Words

	Chapter 3. Run-time Model
	3.1 Memory Models
	3.2 Calling Conventions
	3.3 Startup Code
	3.4 Compiler�Managed �Resources

	Chapter 4. Optimizations
	4.1 Duplicate String Merging
	4.2 Branches
	4.3 Banking
	4.4 WREG Content Tracking
	4.5 Code Straightening
	4.6 Tail Merging
	4.7 Unreachable Code Removal
	4.8 Copy Propagation
	4.9 Redundant Store Removal
	4.10 Dead Code Removal
	4.11 Procedural Abstraction

	Chapter 5. Sample Application
	Appendix A. COFF File Format
	A.1 struct filehdr - File Header
	A.2 struct opthdr - Optional File Header
	A.3 struct scnhdr - Section Header
	A.4 struct reloc - Relocation Entry
	A.5 struct syment - Symbol Table Entry
	A.6 struct coff_lineno - Line Number Entry
	A.7 struct aux_file - Auxiliary Symbol Table Entry for a Source�File
	A.8 struct aux_scn - Auxiliary Symbol Table Entry for a Section
	A.9 struct aux_tag - Auxiliary Symbol Table Entry for a struct/union/enum Tagname
	A.10 struct aux_eos - Auxiliary Symbol Table Entry for an End of struct/union/enum
	A.11 struct aux_fcn - Auxiliary Symbol Table Entry for a Function�Name
	A.12 struct aux_fcn_calls - Auxiliary Symbol Table Entry for Function Call References
	A.13 struct aux_arr - Auxiliary Symbol Table Entry for an Array
	A.14 struct aux_eobf - Auxiliary Symbol Table Entry for the End of a Block�or�Function
	A.15 struct aux_bobf - Auxiliary Symbol Table Entry for the Beginning of a Block�or�Function
	A.16 struct aux_var - Auxiliary Symbol Table Entry for a Variable of Type struct/union/enum
	A.17 struct aux_field - Auxiliary Entry for a Bitfield

	Appendix B. ANSI Implementation-defined Behavior
	B.1 Introduction
	B.2 Identifiers
	B.3 Characters
	B.4 Integers
	B.5 Floating-point
	B.6 Arrays and Pointers
	B.7 Registers
	B.8 Structures and Unions
	B.9 Bit-fields
	B.10 Enumerations
	B.11 Switch Statement
	B.12 Preprocessing Directives

	Appendix C. Command-line Summary
	Appendix D. MPLAB C18 Diagnostics
	D.1 Errors
	D.2 Warnings
	D.3 Messages

	Appendix E. Extended Mode
	E.1 Source Code Compatibility
	E.2 Command-line Option Differences
	E.3 COFF File Differences

	Glossary
	Index
	Worldwide Sales and Service

